The flyby anomaly in need of new physics | 9381
Journal of Aeronautics & Aerospace Engineering

Journal of Aeronautics & Aerospace Engineering
Open Access

ISSN: 2168-9792


The flyby anomaly in need of new physics

3rd International Conference and Exhibition on Satellite & Space Missions

May 11-13, 2017 Barcelona, Spain

Mario J Pinheiro

Instituto Superior T�?©cnico-Universidade de Lisboa, Portugal

Posters & Accepted Abstracts: J Aeronaut Aerospace Eng

Abstract :

The central task of dynamical astronomy is to obtain solutions for equations of satellite motion. This analytic methodology employs Newtonian dynamics with gravitational fields that pulls on matter to get it going. After 100 years the inception of the general theory of relativity (GTR) by Einstein, a cornerstone of modern physics, even accomplished theories might have difficulty explaining a certain class of astronomical phenomena, in particular, small astrometric anomalies. At the end of the 19th century, astronomers discovered that the perihelion of Mercury was slowly advancing in a way that could not be explained by Newtonian physics. As it turned out, this small anomaly in Mercury's orbit has found an explanation in GTR. We may point four classes of astrometric anomalies: The flyby anomaly, addressed in this work; the slow increase of the astronomical unit (AU), approximately the distance from the Earth to the Sun; the pioneer anomaly, which is now a solved puzzle and; the increase in the eccentricity of the Moon's orbit. The flyby anomaly has been a puzzling issue, addressed in the present work and by other numerous authors. We suggest a possible theoretical explanation for the physical process underlying the unexpected orbital-energy change observed during close planetary flybys based on the new concept of topological torsion current (TTC). This approach is along the line of non-standard physical models used to explain the anomalous velocity increase by means of torsion gravity, the majority based on the Ehlers-Pirani-Schild program of constructive axiomatization of the geometric structure of space time. Our theoretical framework is classical and shows that there is an asymmetry when a spacecraft approaches a planet in pro-grade or retro-grade direction, but the anomaly is occurring only in retro-grade direction.

Biography :