ISSN: 1314-3344

The expansion of a finite number of terms of the Gauss hypergeometric function of unit argument and the Landau constants

Abstract

R. B. Paris

We obtain convergent inverse factorial expansions for the sum Sn(a, b; c) of the first n ≥ 1 terms of the Gauss hypergeometric function 2F1(a, b; c; 1) of unit argument. The form of these expansions depends on the location of the parametric excess s := c− a− b in the complex s-plane. The leading behaviour as n → ∞ agrees with previous results in the literature. The case a = b = 1 2 , c = 1 corresponds to the Landau contants for which an expansion is obtained.

Share this article