GET THE APP

Minimal matrix representations for six-dimensional nilpotent Lie algebras | Abstract
Mathematica Eterna

Mathematica Eterna
Open Access

ISSN: 1314-3344

+12 184512974

Abstract

Minimal matrix representations for six-dimensional nilpotent Lie algebras

Ryad Ghanam and Gerard Thompson

This paper is concerned with finding minimal dimension linear representations for six-dimensional real, indecomposable nilpotent Lie algebras. It is known that all such Lie algebras can be represented in gl(6, R). After discussing the classification of the 24 such Lie algebras, it is shown that only one algebra can be represented in gl(4, R). A Theorem is then presented that shows that 13 of the algebras can be represented in gl(5, R). The special case of filiform Lie algebras is considered, of which there are five, and it is shown that each of them can be represented in gl(6, R) and not gl(5, R). Of the remaining five algebras, four of them can be represented minimally in gl(5, R). That leaves one difficult case that is treated in detail in an Appendix.

Top

paper.io

agar io

wowcappadocia.com cappadocia tours
cappadocia-hotels.com cappadocia hotels
caruscappadocia.com cappadocia hotel
brothersballoon.com cappadocia balloon
balloon-rides.net cappadocia balloon flights

wormax io