Journal of Agricultural Science and Food Research

Journal of Agricultural Science and Food Research
Open Access

ISSN: 2593-9173

+44 1223 790975


Enhancing Effects of Phosphorous Enriched Citrus Waste Compost on Nodulation and Various Yield Attributes of Mung Bean in Peshawar District

Mussaddiq Khan Khalil*, Shuja-Ur-Rehman Qureshi, Muhammad Owais Khan, Farooq Ishaq, Muhammad Tariq, Sultan Nawaz, Saif Ur Rehman and Abrar Ahmed

Lack of knowledge with farmers regarding the use of optimum fertilizers rate is one of the key cause of diminishing productivity of our soil. The current study was conducted with an aim to evaluate comparison between inorganic phosphorous fertilizers and phosphorous enriched citrus waste compost in enhancing the nodulation and obtaining economical yield of mungbean. The field trail was operated in Rabi season 2018-2019 using RCB design with 8 treatments and 3 replications. Total 8 treatments were used such as T1 (Control), T2 (Citrus waste compost alone) T3 (DAP alone), T4 (rock phosphate alone), T5 (SSP alone), T6 (4% DAP enriched CW compost), T7 (4% RP enriched CW compost), T9 (4% SSP enriched CW compost) and each treatment was replicated three times. The outcomes of the field trail showed that all the phosphorous treatment has significantly affected the nodulation and grain yield of mungbean but treatments containing phosphorous enriched citrus waste compost was far better in results as compared to treatments containing alone mineral fertilizers. Treatment containing 4% DAP enriched citrus waste compost has significantly increased the grain yield, plant height and number of pods per plant up to 65%, 49% and 43% respectively significantly followed by treatments containing 4% SSP and 4% RP enriched citrus waste compost. However, in case of nodulation maximum values were obtained for treatment receiving alone RP increasing the number and mass of nodules up to 72% and 64%. It was concluded that pretreatment of DAP with citrus waste compost makes the soil favorable for long term phosphorous uptake resulting in better grain yield and yield attributes of mungbean. Though the DAP enriched citrus waste compost was best in our results, but other levels and their consequent effect on soil and crop yields should be assessed along with their environmental risks for wider and long term recommendations.

Published Date: 2019-11-28; Received Date: 2019-10-10