Effects of Ca content on formation and photoluminescence properti | 17567
Journal of Chemical Engineering & Process Technology

Journal of Chemical Engineering & Process Technology
Open Access

ISSN: 2157-7048

Effects of Ca content on formation and photoluminescence properties of CaAlSiN3:Eu2+ phosphor by combustion synthesis

International Conference on Chemical Engineering

September 12-14, 2016 Phoenix, USA

Shyan-Lung Chung and Shu-Chi Huang

National Cheng Kung University, Taiwan

Posters & Accepted Abstracts: J Chem Eng Process Technol

Abstract :

Effects of Ca content (in the reactant mixture) on the formation and the photoluminescence properties of CaAlSiN3:Eu2+ phosphor (CASIN) were investigated by a combustion synthesis method. Ca, Al, Si, Eu2O3, NaN3, NH4Cl and Si3N4 powders were used as the starting materials and they were mixed and pressed into a compact which was then wrapped up with an igniting agent (i.e., Mg+Fe3O4). The compact was ignited by electrical heating under a N2 pressure of â�?¤1.0 MPa. By keeping the molar ratios of Al and Si (including the Si powder and the Si in Si3N4 powder) both at 1.00 and that of Eu2O3 at 0.02; XRD coupled with TEM-EDS and SAED measurements show that AlN:Eu2+ and Ca-�?±-SiAlON:Eu2+ are formed as the major phosphor products when the Ca molar ratio (denoted by Y) is equal to 0.25 and AlN:Eu2+ and Ca-�?±-SiAlON:Eu2+ could not be detected at Yâ�?¥0.75 and â�?¥1.00, respectively. CASIN (i.e., CaAlSiN3:Eu2+) becomes the only phosphor product as Y is increased to 1.00 and higher. The extent of formation of CASIN increases with increasing Y up to 1.50 and begins to decrease as Y is further increased to 1.68. While the excitation wavelength regions are similar at various Y, the emission wavelength regions vary significantly as Y is increased from 0.25 to 1.00 due to different combinations of phosphor phases formed at different Y. The emission intensity of CASIN was found to vary with Y in a similar trend to its extent of formation. The Ca and Eu contents (expressed as molar ratios) in the synthesized products were found to increase roughly with increasing Y but were both lower than the respective Ca and Eu contents in the reactant mixtures.

Biography :