GET THE APP

Medicinal & Aromatic Plants

Medicinal & Aromatic Plants
Open Access

ISSN: 2167-0412

+44 1300 500008

Research Article - (2019)Volume 8, Issue 5

Floristic Composition and Species Diversity of Plant Resources of rural area “Takht Bhai” District Mardan, Khyber Pakhtunkhwa, Pakistan

Muhammad Ibrahim1*, Muhammad Nauman Khan1,2, Sajjad Ali1, Abdul Razzaq3, Akhtar Zaman2, Majid Iqbal4 and Farmanullah Jan1
 
*Correspondence: Muhammad Ibrahim, Department of Botany, Bacha Khan University Charsadda, KP, Pakistan, Tel: 923325350429, Email:

Author info »

Abstract

The study was conducted during 2017-18 to explore and identified flora of rural area Takht Bhai district Mardan. Information based upon floristic knowledge and biological spectrum of rural area Takht Bhai represent 140 taxon with 63 families including 4 Pteridophytic, 3 Gymnospermic and 56 Angiospermic families including 10 Monocots and 46 Dicots. Asteraceae was the topmost in term of number of species (13 sp) followed by Poaceae (9 sp) and Solanaceae (9 sp) each. Fabaceae having 7 species followed by Moraceae, Amaranthaceae, Brassicaceae, Lamiaceae, Myrtaceae and Rosaceae 6 species each. Habit class showed that herbaceous cover were dominant with 58.571% of the total flora followed by trees layer 25%, Shruby layer 11.42% and remaining 5.71% were climbers in area. Plant status concluded that 51.42% of plants were wild while 48.57% are cultivated. Biological spectra depicted that Therophytes were the dominant 40.71% followed by Microphanerophytes 18.57% in life form class while Microphyll 43.57% were highest in leaf size class followed by Nannophyll 20.71%. It was concluded that over utilization, over collection, over exploitation, habitat degradation, overharvesting, deforestation, population explosion and over grazing are the conspicuous biotic stresses which severely threatened the flora in the area which affect the population sustainability on earth crust.

Keywords

Biological spectra; Climbers; Poaceae; Rural area; Takht Bhai

Introduction

Rural area “Takht Bhai” is located about 15 kilometers from Mardan in Khyber Pakhtunkhwa province Pakistan having 34° 05’ to 34° 32’ North latitudes and 71" 48’ to 72° 25’ East longitudes. It is bounded in the North by Buner district and Malakand protected areas, in the Eastern side by district Swabi, South by district Nowshehra and on the West by district Charsadda (Figure 1). The nearby localities of Takht bhai include Shergarh, Thordher, Lund Khuwar, Jalala, Takkar and Khadi Kali. The total area of the district is 1632 square kilometers [1]. The climate of Tehsil Takhat Bhai is sub-humid and semi and sub-Tropical continental highland. The summer season is extremely hot (43.5°C). The coldest month temperature reaches 0.5°C. Most of the rainfall occurs in the month of July, August, December and January. Maximum rainfall is recorded for the months of July and August. The relative humidity is quite high throughout the year reaching 73.33% in December. Major crops of the area are wheat, maize, sugarcane, rice and tobacco. The area is characterized by certain environmental factors such as topography, edaphic factors, climate and special type of soil. These variations may reflect in distinctive ecological habitats, rich flora and important vegetational zones and endowed with a wide range of ecosystem and species diversity. Plants are imperative for the continuation of ecosystem services that is water, air and fertile soil. In spite of great importance, out of approximately 30 million living species only 1.75 million living species of the world have been described so far [2].

Medicinal-Aromatic-Plants-Research-area

Figure 1: Map of the Research area district Mardan.

A large number of species are yet to be explored by biologists. Therefore, plant check list is usually the only source of botanical information of the area and may serve as a useful starting point for detailed study. Usually floristic listing helps in identification and nomenclature of species [3,4]. To develop conservation strategies and estimate the changes taking place in the vegetation patterns of any area, it is required to have a detailed floristic account of that area based on collections and correct identification [5]. The plant assemblage of a region is a function not only of time but also of altitude, slope, latitude, aspect, rainfall and humidity which play a role in its formation and composition [6-8]. A flora is composed of all taxon in certain geographic region, which inhabits a specific ecosystem with some geological period. The flora includes a number of species, while vegetation refers to their distribution and the number of individuals and size of each [9]. It may be summed up as inventory of the plants of a definite area. This inventory is usually authenticated by citations of herbarium specimens and of location or stations where each element is known to have occurred. It is customary to arrange the plants treated in a flora according to a recognized system of classification. Generally, flora is annually varied due to many factors such as moisture levels, geographical position, physiographic features, and human impacts [10]. Floristic diversity of a region is the total of the species within its boundaries, weather wild or cultivated, which is a reflection of vegetation and plant resources. Plant resources are affected by agriculture, over grazing, anthropogenic interaction and natural disasters. It is a better parameter of plant life, gene pool and diversity of plants in any area [11]. Floristic studies are taxonomic studies of a flora or of a major segment of a flora, of a given area. They may range in extent from a compiled checklist of vascular plants of a small politically bounded area to through taxonomic or biosystematics analysis of the components of the vascular flora of a continent because of this wide scope, the subject of floristic and the professional Botanist. It is a field of interest in which the amateur Botanist have taken active and contributory part. The botanist showed to be encouraged to continue to investigate such problems for they provide an avocation that can produce important contributions to the knowledge of any major flora. Among professional botanists, there are many who have not the time, facilities, or interest required for revisionary studies, but do find that study of the flora of a particular area provide an opportunity for welcomed field activity and the knowledge that valuable data are being recorded. From this it is clear that here is a type of botanical activity that may be conducted for scientific gain which can be limited in scope to meet the potentials and the needs of any serious-minded investigator [12-14]. To till date approximately 6000 flowering plants have been reported in Pakistan with more than 200 families and 414,000 of flowering plants in the world [15]. About 80% of the endemic flowering plants of Pakistan are restricted to the northern and western mountains [16]. Pakistan, though, not among the biodiversity hot spots of the world, still faces immense challenges of conservation and sustainable utilization of biological resources. Degradation in natural resources is visible, caused by increased human activities related to the growing population coupled with, human demolition of natural habitations, relocation of human population causing in the change of land use pattern, introduced species, the increasing demand for natural assets and its incorrect management [17]. Floristic composition some time also termed as species composition is referring to as ‘the sum of all species presents in certain area with a specific geographical composition. Life-forms have mutual relationships with environmental factors and can be viewed as strategies for obtaining resources [18-21]. According to Raunkiaer stated that life-form classification is based on the manner in which plants secure their storage buds throughout a period. It can be summed up into five main classes: Phanerophytes, Chamaephytes, Hemicryptophytes, Cryptophytes, and Therophytes. This sequence matches up with an increasing protection of the perennating buds.

Climatic types can be characterized by the prevailing life-forms in plant communities growing under a given climatic regime, using the proportions of species in each life-form class, or the biological spectrum. The biological spectrum is one of the significant physiognomic features characterizing vegetation used extensively in analyzing vegetation [22]. Khan et al. [23] stated that it is the index for phytoclimate of the site, deduction of which is based on diverse life-forms composing the flora of the site. The life form of plants is an adaptive response to environmental gradients and indicator of habitat prevailing conditions [24]. Life form can be considered as symbol or direction of shallow and deep climate [25]. Leaf size study is a valuable tool in describing the plant communities [26]. Local plants distribution gives vital information’s about plant species, their distribution and climatic effect, which effect the distribution of the plants in that particular region [9].

The main aim of this study is to assess the floristic composition, taxonomic identification of plant resources of rural area “Takht Bhai” District Mardan, Khyber Pakhtunkhwa, Pakistan with special reference to the following objectives

• To prepare a comprehensive checklist of flora.

• Collection, identification, documentation of wild and cultivated plants from the area.

Materials and Methods

Site details

“Takht Bhai” is located in district Mardan having 34° 05’ to 34° 32’ North latitudes and 71" 48’ to 72° 25’ East longitudes. It is bounded in the North by Buner district and Malakand protected areas, in the Eastern side by district Swabi, South by district Nowshehra and on the West by district Charsadda (Figure 2). The climate is sub-humid and semi and sub-Tropical continental highland. The summer season is extremely hot (43.5°C). The coldest month temperature reaches 0.5°C. Most of the rainfall occurs in the month of July, August, December and January. The relative humidity is quite high throughout the year reaching 73.33% in December [1,27] (Table 1).

Medicinal-Aromatic-Plants-Family-wise-distribution

Figure 2: Family-wise distribution.

Division Family Botanical Name Status Habit Life form Leaf size
A. Pteridophytes Adiantaceae Adiantum capillus-veneris L. W H H N
Dryopteridaceae Dryopteris serrato-dentata (Bedd) Hay. W H H Mg
Equisetaceae Equisetum arvense L. W H H N
Marsileaceae Marsilea quadrifolia L. W H H N
B. Gymnosperms Araucariaceae Araucaria columnaris L. C T Mp Mac
Cupressaceae Cupressus sempervirens L. C T Meg Mes
Thuja orientalis L. C T Mp N
Pinaceae Pinus roxburghii Sargent. C T G Mic
C. Angiosperm (Monocots) Alliaceae Allium cepa L. C H G Mic
Allium sativum L. C H G Mic
Amaryllidaceae Narcissus poeticus L. C H Mp Mes
Narcissus tazetta L. C H Mp Mes
Zephyranthes rosea Lindle. W H Mp Mes
Araceae Colocasia esculentus L. C H G Mg
Arecaceae Phoenix dactylifera L. C T Mp Mis
Asparagaceae Asparagus officianalis L. C H Np L
Asphodelaceae Aloe vera L. C H Ch Mes
Cannaceae Canna indica L. W H Ch Mes
Cyperaceae Cyperus rotundus L. W H Th N
Poaceae Arundo donax L. W H Ph Mac
Avena sativa L. W H Th N
Cymbopogan citratus Spreng. C H Np N
Cynodon dactylon (L.) Pers. W H H L
Desmostachya bipinnata (L.) Stapf. W H H Mac
Dichanthium annulatum (Forssk) Stapf. W H H N
Phalaris minor L. W H Th Mic
Sorghum halepense (L.) Pers. W H G Mic
Triticum aestivum L. C H Th Mic
Zingiberaceae Curcuma longa L. C H Ch Mes
(Dicots) Aizoaceae Trianthema portulacastrum L. W H Th N
Amaranthaceae Achyranthes aspera L. W H Th Mes
Amaranthus spinosus L. W H Ch Mic
Amaranthus viridis L. W H Th Mic
Digera muricata L. W H Th Mic
Anacardaceae Mangifera indica L. C T Mp Mes  
Apiaceae Coriandrum sativum L. C H Th N  
Foeniculum vulgaris Mill. C H Th L  
Apocynaceae Catharanthus roseus (L.) G.Don. C H Ch Mis  
Nerium oleander L. C S Np Mic  
Rhazya stricta Decne. W S Ch Mic  
Asclepiadaceae Calotropis procera Willd R.Br. W S Ch Mes  
Asteraceae Calendula officinalis L. C H Th N  
Chrysanthemum indicum L. C H H N  
Cirsium arvense (L.) Scope. W H Th Mic  
Conyza canadensis (L.) Cronq. W H Th N  
Helianthus annuus L. C H Th Mes  
Lactuca sativa L. C H Th Mic  
Parthenium hysterophorus L. W H Th Mes  
Silybum marianum (L.) Gaeth. W H Th Mes  
Sonchus asper L. W H Th Mic  
Tagetes erecta L. C H Th N  
Tagetes patula L. C H Th N  
Taraxacum officinale Weber. W H Th Mic  
Xanthium strumarium L. W S Th N  
Boraginaceae Cordia myxa L. C T Ph Mic  
Brassicaceae Brassica campestris L. C S Th Mac  
Brassica rapa L. C H Th Mes  
Coronopus didymus (L.) Sm. W H Th L  
Raphanus sativus L. C H Th N  
Caesalpinaceae Bauhinia variegata L. C T Mp Mes  
Cassia occidentallis L. W H Th Mes  
Canabinaceae Cannabis sativa L. W H Th Mic  
Chenopodiaceae Chenopodium album L. W H Th Mic  
Spinacea oleraceae L. C H Th Mic  
Convolvulaceae Convolvulus arvensis L. W Cl Th Mic  
Cucurbitaceae Cucurbita pepo L. C Cl Th Mg  
Luffa cylindrica (L.) Roem. C Cl Th Mg  
Momordica charantia L. C Cl Th Mes  
Ebenaceae Diospyrus lotus L. C T Mp Mic  
Euphorbiaceae Euphorbia helioscopia L. W H Th N  
Euphorbia hirta L. W H Th Mic  
Ricinus communis L. W S Np Mg  
Fabaceae Dalbergia sissoo Roxb. W T Meg Mic  
Lathyrus aphaca L. W Cl Th N  
Medicago polymorpha  L. W H Th N  
Melilotus indica (L.) W H Th Mic  
Pisum sativum L. C H Th N  
Trifolium repens L. C H Th Mic  
Vicia sativa L. W H Th Mic  
Fumaraceae Fumaria indica  (Hausskn) H. N. Pugsley W H Th L  
Lamiaceae Mentha longifolia (L.) Huds. W H G Mic  
Mentha spicata L. C H G Mic  
Vitex negundo L. W S Np N  
Malvaceae Abelmoschus esculentus L. C H Th Mic  
Hibiscus rosa-sinensis L. C S Th Mic  
Malvastrum coromandelianum (Linn.) Garcke W H H Mic  
Meliaceae Melia azedarach L. W T Mp Mic  
Mimosaceae Acacia nilotica (Linn.) Delile. W T Ph L  
Acacia modesta Wall. W T Ph L  
Moraceae Broussonetia papyrifera (L.) Vent. W T Mp Mg  
em>Ficus carica L. W T Mp Mes  
Ficus palmata Forssk. C T Mp Mes  
Morus alba L. W T Mp Mes  
Morus laevigata Wall.Ex Brandis. W T Mp Mes  
Morus nigra L. W T Mp Mes  
Myrtaceae Callistemon lanceolatus L. C T Np Mic  
Eucalyptus camaldulensis Dehnh. C T Mp Mic  
Myrtus communis L. C T Np Mic  
Psidium guajava L. C T Ch N  
Nyctaginaceae Bougainvillea spectabilis L. C Cl Mp Mic  
Mirabilis jalaba L. W H Ch Mes  
Oleaceae Jasminum sambac L. C H Ch Mic  
Ligustrum ovalifolium L. C S Th Mic  
Oxalidaceae Oxalis corniculata L. W H G N  
Papaveraceae Papaver somniferum L. C H Th Mic  
Plantaginacae Plantago lanceolata L. W H Th Mic  
Platanaceae Platanus orientalis L. C T Mp Mes  
Polygonaceae Polygonum barbatum L. W H Ch Mic  
Rumex dentatus L. W H Th Mes  
Portulacaceae Portulaca olearaceae L. W H H N  
Punicaceae Punica granatum L. C T Ph N  
Ranunculaceae Ranunculus muricatus L. W H G Mic  
Rhamnaceae Ziziphus jujuba Mill. C T Mp Mic  
Ziziphus mauritiana L. W T Mp Mic  
Rosaceae Prunus amygdalis L. C T Mp Mic  
Prunus domestica L. C T Ph Mac  
Pyrus communis L. C T Mp Mic  
Rosa alba L. C S Np Mic  
Rubiaceae Galium aparine L. W Cl Th L  
Rutaceae Citrus auratiifolia (christm) Swingle. C T Mp Mic  
Citrus limonum (L.) Osbeck. C T Th N  
Salicaceae Populus alba L. C T Mp Mes  
Salix acmophylla Boiss. W T Th Mic  
Sapindaceae Dodonaea viscosa (L.) Jacq. C S Np Mic  
Scrophulariacee Verbascum thapsus L. W H Np Mic  
Simaroubaceae Ailanthus altissima (Mill) Swingle. W T Mp Mic  
Solanaceae Cestrum diurnum L. C S Ch N  
Cestrum nocturnum L. C S Ch N  
Datura alba L. W H Ch Mes  
Lycopersicum esculentum L. C H Th Mic  
Physalis minima L. W H Ch Mic  
Solanum melongena L. C S Th Mac  
Solanum nigrum L. W H Th Mic  
Solanum surattense Burm.f. W H Th Mic  
Solanum tuberosum L. C H Ch Mic  
Verbenaceae Lantana camara L. W S Th Mic  
Verbena officinalis L. W H Th N  
Vitaceae Vitis vinifera L. C Cl Np Mac  
Zygophyllaceae Tribulus terrestris L. W H Th N  

Table 1: Floristic checklist, status, habit, life form and leaf size spectra.

Collection of samples and identification

Frequent study tours were made to the research area in different seasons during March 2017 to July 2018 to collect different plant species. The species were then preserved in newspaper for 15 days after mounted in herbarium sheets for identification. Plants were then identified with the help of available literature [28-31]. All specimens were arranged alphabetically. The samples were then submitted to the Department of Botany herbarium, University of Peshawar for further record.

Biological spectra

For biological spectrum plants were categorized into different life-form and leaf size classes (Table 2, Figures 3, 4 and Figure 5) which are Raunkiaer [22] Hussain [32] and Badshah et al. [11]. Life form reflects the adaptation of plants to climate. This classification is based on the position of perennating buds on the plants and the degree of their protection during adverse condition while leaf size helps in identification of physiological process of plant communities and is useful in classifying the association.

S. No Habit of plants Total species % age
1 Herb 82 57.86%
2 Tree 35 25%
3 Climber 8 5.71%
4 Shrub 16 11.43%
Total 140 100%
S. No Status of plants Total species % age
1 Wild 72 51.43%
2 Cultivated 68 48.57%
Total 140 100%
S. No Life form Total species % age
1 Therophytes 57 40.71%
2 Microphanerophytes 26 18.57%
3 Chamaephytes 19 13.57%
4 Nannophanerophytes 12 8.57%
5 Hemicryptophytes 10 7.14%
6 Geophytes 8 5.71%
7 Phanerophytes 6 4.29%
8 Mega phanerophytes 2 1.43%
Total 140 100%
S. No Leaf size Total species % age
1 Microphyll 61 43.57%
2 Nanophyll 29 20.71%
3 Mesophyll 27 19.29%
4 Leptophyll 10 7.14%
5 Macrophyll 7 5%
6 Megaphyll 6 4.29%
Total 140 100%

Table 2: Status, Habit, Life form and Leaf size spectra percentages.

Medicinal-Aromatic-Plants-Habit-class-classification

Figure 3: Habit class classification.

Medicinal-Aromatic-Plants-Life-classification

Figure 4: Life form classification.

Medicinal-Aromatic-Plants-Leaf-size-classification

Figure 5: Leaf size classification.

Results and Discussion

Floristic composition and its ecological characteristics

Floristic diversity of a region is the total of the species within its boundaries, weather wild or cultivated, which is a reflection of vegetation and plant resources. Plant resources are affected by agriculture, over grazing, anthropogenic interaction and natural disasters. The flora of Takht Bhai, Mardan, KP, Pakistan revealed 140 plant taxon and 63 families during 2017-18 in which 4 families were Pteridophytic, 3 were Gymnospermic and rest of 56 families were Angiospermic including 10 Monocot (21 species 15%) and 46 Dicot (111 species 79.285%) families (Table 1). According to plant habit (Table 2 and Figure 3) herbaceous cover were dominant with 82 species (58.571%) followed by trees 34 species (24.285%), shrubs 16 species (11.428%) and climber 8 species (5.714%). Status of plants includes, 72 species (51. 428%) were wild and 68 species (48.571%) were cultivated (Table 2). The dominant family was Asteraceae with 13 species, followed by Solanaceae and Poaceae with 9 spp. each, Fabaceae 7 spp, Moraceae 6 spp, Amaranthaceae, Brassicaceae, Lamiaceae, Myrtaceae and Rosaceae 4 spp. each, Amaryllidaceae, Apocynaceae, Cucurbitaceae, Euphorbiaceae and Malvaceae with 3 spp. each, Alliaceae, Apiaceae, Caesalpinaceae, Chenopodiaceae, Cupressaceae, Mimosaceae, Nyctaginaceae, Oleaceae, Polygonaceae, Rhamnaceae, Rutaceae, Salicaceae and Verbenaceae with 2 spp. each. The rest of 35 families are monophilitic and comprised of 1 genus and 1 specie each (Table 3). Similar results were made by [11,33-35] Sher et al. who also explored same floristic study of these families from different region of KP, Pakistan [36]. Badshah et al. also reported these families to be well represented in semiarid area of district Tank, Pakistan [11]. Mehmood et al. [37] highlighted 25 (Asteraceae) and 21 species of Poaceae from Torghar and Qureshi et al. [38] also reported (7) Asteraceae and (6) Poaceae members and considered these families as a richest in district Toba Tek Singh, Pakistan. [39,40] also observed that these families were dominant in their respective study sites. Some other literature also indicated similar results in Flora of Pakistan [16,27-30]. Our results are predominantly sponsored by them as Asteraceae, Poaceae and Solanaceae have emerged as the common families in the investigated area. Rahman et al. [14] and Rawat & Pangtey, Rawat also stated the abundance of same families in Rajshahi City and Central Himalaya, India [41]. The members of Poaceae and Asteraceae due to their wide ecological amplitude are diverse in their habitat occurrence.

S. No Division No of families Total species % age
1 Pteridophytes 4 4 2.857%
2 Gymnosperms 3 4 2.857%
3 Monocots 10 21 15 %
4 Dicots 46 111 79.285%
Total 63  140 100%

Table 3: Enumeration of species and families.

Life form spectra and its composition

Plant species can be categorized into different life form classes depend upon structural and functional similarities [20]. Life forms of species also vary profoundly under the influence of such altitudinal variations. Life forms in an ecosystem indicate the adaptations of plant species’ physiognomy to the surrounding climate [24,42]. We use Raunkiaerean classification and thus proved that overall Therophytes (Table 2, Figure 4) found to be 57 spp. (40.714%), Microphanerophytes 26 spp. (18.571%), Chamaephytes 19 spp. (13.571%), Nanophanerophytes 12 spp. (8.571%), Hemicryptophyte 10 spp. (7.142%), Geophytes 8 spp. (5.714%), Phanerophytes 6 spp. (4.285%) and Megaphanerophytes 2 spp. (2.97%). Alsherif et al. [43] also reported the dominancy of Therophytic plants from Khulais region, Western Saudia Arabia and identified 251 plant species with 50 families. In 1934 Raunkiaer [21] described three major phytoclimates on the basis of life form on the planet. This may include Phanerophytic climate in the tropics, Therophytic in deserts and Hemicryptophytic in the greater part of cold temperate zone. Biological spectra change due to biotic influences like agricultural practices, grazing, deforestation, trampling and climatic change. The current overall spectra revealed the dominancy of Therophytic plants.

Leaf size spectra and its composition

The leaf size knowledge helps in understanding physiological process of plants and plant communities and is useful in classifying the associations. The leaf size spectrum indicated (Table 2, Figure 5) that Microphyll 61 species (43.571%) were dominant of the area followed by Nanophyll 29 species (20.714%), Mesophyll 27 species (19.285%), Leptophyll 10 species (10.89%), Macrophyll 7 species (6.93%) and Megaphyll 6 species (4.285%) were reported. Khan et al. [44] studied 55 families from Sathan Galli, District Mansehra of Khyber Pakhtoonkhawa (KP) Pakistan. Leaf size spectra were dominated by Microphyll contributing 68 species, followed by Mesophylls 45 species. Therophytes were found as leading life form of the area encompassing 30.35% species. Current exploration revealed that Therophytes and Microphyll were dominant in the study area depicting heavy biotic pressure due to deforestation, over grazing and soil erosion. Shaheen et al. [45] carried out the floristic composition, phenology, leaf and biological spectrum of Tehsil Havelian and enlisted 205 plant species belonging to 78 families. Shaheen et al. Identified 132 species belonging to 101 Genera and 41 families floristically from alpine region of Deosai Plateau, Western Himalayas. Khan et al. [33] identified and documented 18 families in which 6 genera and 7 species were monocots and 27 genera and 28 species were dicots from Village Ochawala, district Charsadda, Pakistan. Shah and Hussain, [46] observed Therophytes as most dominant class in Hayatabad, Peshawar. Some prominants works related to this area are; [47] reported 132 species with 104 genera and 47 families from Shahbaz Garhi, District Mardan in which family Poaceae and class therophytes were the dominant in his study. Similarly [24] also reported 38 flowering families from Sheikh Maltoon Town district Mardan and recorded Therophytes and Microphylls were important class. Khan et al. also documented 124 genera from tehsil Katlang [48], district Mardan and concluded the dominancy of therophytes prove the area is under heavy biotic stress. Genera like Amaranthus, Euphorbia, Juncus, Marsilea, Morus, Populus, Polygonum, Tegetes, Zinnia and Zizipus were reported from riparian zone of Lund Khuwar, district Mardan, KP, Pakistan by Khan et al. [49]. Khan and Shah, [50] reported 13.7% xerophytes, 82.7% mesophytes and 3.4% hydrophytes plant from district Mardan. Khan et al. documented leaf size and life form spectra from Allai valley in the western Himalayan region of Pakistan [51]. Nazir A reported life-form and index of similarity from Sarsawa Hills, District Kotli [52]. Gul recorded different life forms and leaf size classes in University of Peshawar Campus [53]. Hussain et al. explored biological spectrum of Lesser Himalayan, Pakistan [54]. Nawab et al. depicted life form and leaf size spectra of native vascular flora of Kalam Valley, district Swat, Pakistan [55]. Ali et al. reported from district Nowshera [56], Khyber Pakhtunkhwa [57] from Tehsil Oghi, Mansehra. Amjad studied life form and leaf size from subtropical forest of Kotli District, AJK, Pakistan [58]. from Nikyal valley, Azad Jammu and Kashmir [59]. This is the 1st ever reports on floristic study of plants of Takht Bhai which might help for future researches.

Conclusion

The current study revealed that 140 plant species have been identified with 63 families in worked in rural area Takht Bhai district Mardan. 4 Pteridophytic, 3 Gymnospermic and 56 Angiospermic families including 10 Monocots and 46 Dicots. Family Asteraceae (13 species) was the most dominant in all followed by Poaceae (9 species). 35 families were monophilitic and had one species and 1 genus each. Herbaceous cover was dominant with 58.571% of the total flora. 51.42% of flora is wild in nature and 48.57% are cultivated. Therophytes were the dominant 40.71% in life form class and Microphyll 43.57% were in leaf size class. From the current exploration it was concluded that over utilization, over collection, over exploitation, habitat degradation, overharvesting, deforestation, population explosion and over grazing are the conspicuous biotic stresses which severely threatened the flora in the area which affect the population sustainability on earth crust.

References

  1. Anonymous. District Census Report of Mardan District. PCO, Govt. of Pakistan, 1998.
  2. Ahmed W, Qureshi R, Arshad M. Floristic, frequency and vegetatio-biological spectra of Murree-Kotli Sattian-Kahuta National Park, Pakistan. Pak. J Bot 2019;51:637-648.
  3. Keith DA. Floristic lists of New South Wales (III). Cunninghamia. 1988;2:39-73.
  4. Ilyas M, Qureshi R, Arshad M, Mirza SN. A preliminary chick list of the vascular Flora of Kabal Valley, Swat, Pakistan. Pak J Bot 2013;45:605-615.
  5. Khan SM, Ahmad H. Role of Indigenous Arqiyat Distillery in conservation of Rosa species. Int J Phyt 2014;6:162-164.
  6. Kharkwal G, Mehrotra P, Rawat YS, Pangtey YPS. Phytodiversity and growth form in relation to altitudinal gradient in the Central Himalayan (Kumaun) region of India. Curr Sci 2005;89:873-878.
  7. Ilyas M, Shinwari ZK, Qureshi R. Vegetation composition and threats to the Montane temperate forest ecosystem of Qalagai Hills, Swat, Khyber Pakhtunkhwa, Pakistan. Pak J Bot 2012;44:113-122.
  8. Khan SM, Page S, Ahmad H, Ullah Z, Shaheen H, Ahmad H, et al. Phyto-climatic gradient of vegetation and habitat specificity in the high elevation Western Himalayas. Pak J Bot 2013;45:223-230.
  9. Ali SI. The significance of flora with special reference to Pakistan. Pak J Bot 2008;40:967-971.
  10. Al-Robai SA, Mohamed HA, Howladar SM, Ahmed AA. Vegetation structure and species diversity of Wadi Turbah Zahran, Albaha area, southwestern Saudi Arabia. Annals of Agri Sci 2013;62:61-69.
  11. Badshah L, Hussain F, Sher Z. Floristic Inventory, ecological characteristics and biological spectrum of rangeland, District Tank, Pakistan. Pak J Bot 2013;45:1159-1168.
  12. Benson L. Plant classification. Health and Company. Boston. U.S.A 1957.
  13. Ahemd N. Wild Flowers of Bangladesh. The University Press Ltd. Dhaka, Bangladesh 1997.
  14. Rahman AHMM, Anisuzzaman M, Ahmed F, Zaman ATMN, Islam AKMR. A floristic study in the graveyards of Rajshahi city. Res Jou Agri and Bio Sci 2007;3:670-675.
  15. Shuaib M, Ahmed S, Ali K, Ilyas M, Hussain F, Urooj Z, et al. Ethnobotanical and ecological assessment of plant resources at District Dir, Tehsil Timergara, Khyber Pakhtunkhwa, Pakistan. Act Eco Sin 2019;39:109-115.
  16. Ali SI, Qaiser M. A phytogeographical analysis of the phanerogams of Pakistan and Kashmir. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences1986;89:89-101.
  17. Khan MA, Khan SM, Khan SM, Hussain I, Khan SA, Liaqat M, et al. Species diversity and ethno botanical study of Allai valley in the western Himalayan region of Pakistan. Pak J Weed Sci Res 2017;23:207-220.
  18. Ellenberg D, Dombois DM. Aims and methods of vegetation ecology. New York: Wiley, USA, 1974.
  19. Crosswhite FS, Crosswhite CD. A classification of life forms of the Sonoran Desert, with emphasis on the seed plants and their survival strategies 1984;131-161.
  20. Cody ML. Spacing in Mojave Desert plant communities. II. Plant size and distance relationships. Isr Jou Bot 1986;35:109-120.
  21. Da Costa RC, De Araújo FS, Lima-Verde LM. Flora and life-form spectrum in an area of deciduous thorn woodland (caatinga) in northeastern, Brazil. Jou Arid Env 2007;68:237-247.
  22. Raunkiaer C. The life forms of plants and Statistical Plant Geography. Clrendon Press, Oxford. 1934.
  23. Khan AM, Ullah A, Rashid A, Shah SM, Fida S. Floristic leaf-size and life form spectra of Asshab Baba graveyards Chagharmatti, District Peshawar, Khyber Pakhtoonkhwah, Pakistan. Int J Biol Biotech 2014;11:167-171.
  24. .Archibold OW. Ecology of world vegetation. Chapman & Hall, London. 1995.
  25. Khan M, Hussain F, Musharaf S. Floristic composition and biological characteristics of the vegetation of Sheikh Maltoon Town District Mardan, Pakistan. Ann Rev & Res Bio2013;3:31-41.
  26. Oosting HJ. The study of plant communities, 2nd Edn, 69-78. W. H. Freeman and Co., San Francisco, USA. 1956.
  27. Afridi SG, Sultan S, Butt ZA, Ahmad H. Ecological prevalence of the weed species growing in maize and sugarcane fields of district Mardan, Pakistan. J Bio & Env Sci 2015;7:1-7.
  28. Nasir E, Ali SI. Flora of Pakistan. PARC, Islamabad, Pakistan. 1971-1989.
  29. Stewart RR. An annotated catalogue of the vascular plants of West Pakistan and Kashmir. Karachi: Fakhri Printing Press. 1972.
  30. Ali SI, Nasir Y. Flora of Pakistan, Department of Botany, University of Karachi, Pakistan. 1989-1991.
  31. Ali SI, Qaiser M. Flora of Pakistan, Department of Botany, University of Karachi, Pakistan. 1991-2019.
  32. Hussain F. Field and Laboratory Manual of Plant Ecology. UGC Islamabad, Pakistan. 1989.
  33. Khan MN, Hadi F, Razaq A, Shah SM. Utilitarian aspects of weeds and their ecological characteristics in Ochawala valley, District Charsadda, Pakistan. APRN J Agric and Biol Sci 2017;12:182-189.
  34. Khan MN, Badshah L. Floristic diversity and utility of flora of district Charsadda, Khyber Pakhtunkhwa. Act Eco Sin 2019;39:306-320.
  35. Khan MN, Hadi F, Bibi M, Khan N, Shah SM. Utilitarian aspects of weeds of wheat fields in Charbagh valley district Swat Pakistan. Pak J Weed Sci Res 2019;25:37-48.
  36. Sher Z, Hussain F, Badshah L, Wahab M. Floristic composition, communities and ecological characteristics of weeds of wheat fields of Lahore, District Swabi, Pakistan. Pak J Bot 2011;43:2817-2820.
  37. Mehmood A, Khan SM, Shah AH, Shah AH, Ahmad H. First floristic exploration of the District Torghar, Khyber Pakhtunkhwa, Pakistan. Pak J Bot 2015;47:57-70.
  38. Qureshi R, Waheed A, Arshad M. Weed communities of wheat crop in district Toba Tek Singh, Pakistan. Pak J Bot 2009;41:239-245.
  39. Hussain F, Iqbal I, Akhtar P. Floristic and vegetation studies of Ghalegay hills, district Swat, Pakistan. Int J Bio & Biot2005;2:847-852.
  40. Qureshi R, Bhatti GR, Shabbir G. Floristic inventory of Pir Ali Shah Arid Agriculture University research farm at Koont Muree road Rawalpindi, Pakistan. Pak J Bot 2011;43:1679-1684.
  41. Rawat GS, Pangtey YPS. Floristic structure of snowline vegetation in Central Himalaya, India. Arctic and Alpine Research 1987;19:195-201.
  42. Patel H, Jain BK, Dabgar YB. Life form and phyto-climate of Sebhargog region, north Gujarat, India. Plant Archives 2010;10:965-966.
  43. Alsherif EA, Ayesh AM, Rawi SM. Floristic composition, life form and chorology of plant life at Khulais region, Western Saudi Arabia Pak. J Bot 2013;45:29-38.
  44. Khan KR, Ishtiaq M, Iqbal Z, Alam J, Shah AH, Farooq M, et al. Biological spectra of vegetation of Sathan Gali, Mansehra, KPK, Pakistan. WSN2017;87:136-149.
  45. Shaheen S, Iqbal Z, Ijaz F, Alam J, Rahman IU. Floristic composition, Biological spectrum and phenology of Havelian, Distric Abbottabad, KP, Pakistan. Pak J Bot2016;48:1849-1859.
  46. Shaheen H, Ibrahim M, Ullah Z. Spatial patterns and diversity of the alpine flora of Deosai Plateau, Western Himalayas. Pak. J Bot 2019;51:205-212.
  47. Shah M, Hussain F. Phytosociological study of the vegetation of Hayat Abad peshawar, Pakistan. Pak J Pl Sci 2009;15.
  48. Khan M, Hussain F, Musharaf S. Floristic composition and ecological characteristics of Shahbaz Garhi, District Mardan, Pakistan. Glob J Scie Front Res 2014;14:7-17.
  49. Khan M, Hussain F, Musharaf S. Classification of plant species in Tehsil Katlang, district Mardan, Khyber Pakhtunkhawa, Pakistan. Med Plant Res 2003;4.
  50. Khan MN, Khan N, Hadi F, Shah SM, Razzaq A. Ecology of Riparian vegetation of Lund Khuwar, District Mardan, KP, Pakistan. Nat Prod Ind J 2018;14:119.
  51. Khan NA, Shah M. Eco-taxonomic study of family Brassicaceae of District Mardan, Khyber Pukhtoon-Khwa, Pakistan. PJLS 2013;1:28-35.
  52. Nazir A, Malik ZH. Life-form and index of similarity of plant communities recorded at Sarsawa Hills, District Kotli. J Res Sci 2006;17:27-33.
  53. Gul B, Ahmad I, Khan H, Zeb U, Ullah H. Floristic inventory of wild plants of Peshawar University Campus. Act Eco Sin 2018;38:375-380.
  54. Hussain F, Illahi F. Ecology and vegetation of lesser Himalayan. University of Peshawar publication. 1991.
  55. Nawab B, Alam J, Ali H, Hussain M, Shah M, Ahmad S, et al. Conservation status assessment of native vascular flora of Kalam Valley, Swat District, Northern Pakistan. 2018;10:453-470.
  56. Ali S, Shah SZ, Khan MS, Khan WM, Khan Z, Hassan N, et al. Floristic list, ecological features and biological spectrum of district Nowshera, Khyber Pakhtunkhwa, Pakistan. Act Eco Sin 2019; 39:133-141.
  57. Ahmed J, Rahman IU, Abd-Allah EF, Ali N, Shah AH, Ijaz F, et al. Multivariate approaches evaluated in the ethnoecological investigation of Tehsil Oghi, Mansehra, Pakistan. Act Eco Sin 2018.
  58. Amjad MS, Arshad M, Page S, Qureshi R, Mirza SN. Floristic composition, biological spectrum and phenological pattern of vegetation in the subtropical forest of Kotli District, AJK, Pakistan. Pure and App Biology2017;6:426-447.
  59. Amjad MS, Arshad M, Sadaf HM, Akrim F, Arshad A. Floristic composition, biological spectrum and conservation status of the vegetation in Nikyal valley, Azad Jammu and Kashmir. Asi Pac J Tro Dis 2016;6:63-69.

Author Info

Muhammad Ibrahim1*, Muhammad Nauman Khan1,2, Sajjad Ali1, Abdul Razzaq3, Akhtar Zaman2, Majid Iqbal4 and Farmanullah Jan1
 
1Department of Botany, Bacha Khan University Charsadda, KP, Pakistan
2Department of Botany, University of Peshawar, KP, Pakistan
3Department of Botany, Islamia College Peshawar, KP, Pakistan
4Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
 

Citation: Ibrahim M, Nauman Khan M, Ali S, Razzaq A, Zaman A, Iqbal M, et al. (2019) Floristic Composition and Species Diversity of Plant Resources of Rural Area ’Takht Bhai‘ District Mardan, Khyber Pakhtunkhwa, Pakistan. Med Aromat Plants (Los Angeles) 8. 338 DOI: 10.35248/2167-0412.19.8.338

Received: 30-Sep-2019 Accepted: 09-Oct-2019 Published: 16-Nov-2019 , DOI: 10.35248/2167-0412.19.8.338

Copyright: © 2019 Ibrahim M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, whichpermits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top