GET THE APP

The Control of Apoptotic Death in the Cells of Granulomatous Inflammatory Lesions from Mice with Latent Tuberculous Infection in the Ex Vivo Model | Abstract
Immunome Research

Immunome Research
Open Access

ISSN: 1745-7580

Abstract

The Control of Apoptotic Death in the Cells of Granulomatous Inflammatory Lesions from Mice with Latent Tuberculous Infection in the Ex Vivo Model

Elena Ufimtseva

Since different specific cellular responses to latent chronic and acute BCG infection in mouse cells were determined, the our aim was to analyze granulomas isolated from the lungs, spleens and bone marrow of Balb/c mice with latent BCG infection for the presence of inducers and markers of apoptotic cell death. In granuloma cells with increased levels of the inducer of apoptosis TNFα, proapoptotic proteins Вах and Ваd, death receptor Fas/ CD95 and scavenge receptor CD36, we did not observe P53 stabilization or caspase-3 activation in the cytoplasm or nuclei of macrophages and dendritic cells, irrespective of the presence or absence of acid-fast BCG mycobacteria in them. The survival receptor CD30 was detected on the cell membranes of only few granuloma macrophages. However, at later times of tuberculous infection in mice, virtually all macrophages and other granuloma cell types had considerable amounts of the antiapoptotic protein Bcl-2 in the cytoplasm and, probably, mitochondria, in contrast to macrophages from bone barrow cell cultures and peritoneal exudates infected with BCG mycobacteria in vitro. Preservation of mitochondrial ΔΨm during staining of living granuloma macrophages containing large amounts of the Bcl-2 protein was indicative of its involvement in maintaining the integrity of mitochondrial elements and the protection of granuloma cells from death, because in similar experiments the control macrophages that did not have any Bcl-2 protein in them had considerably reduced ΔΨm and exhibited morphological signs of apoptotic death. Taken together, our results suggest that the antiapoptotic protein Bcl-2 has been proposed to contribute to the viability of granulomas macrophages not only in ex vivo culture, but also in the animal organism when faced with mycobacterial, proinflammatory and proapoptotic factors operating in granulomatous inflammatory lesions at various times of latent tuberculous infection in mice.