Enzyme Engineering

Enzyme Engineering
Open Access

ISSN: ISSN: 2329-6674



Response Surface Methodology for Enzyme-Assisted Extraction of Water- Soluble Antiviral Compounds from the Proliferative Macroalga Solieria chordalis

Burlot Anne-Sophie, Bedoux Gilles and Bourgougnon Nathalie

Macroalgal blooms frequently occur in France. On a part of the coastline, these algal blooms are mainly composed of red seaweeds like Solieria chordalis and constitute an unexploited significant natural biomass. In this study, active compounds from Solieria chordalis were extracted and evaluated as a potential source of natural antivirals, coupling biotechnological development with economic and ecological benefits. In order to extract in water the highest quantity of potential active compounds, a sustainable process was developed, namely the enzymeassisted extraction. The quantity of water-soluble compounds increased by 30% after the addition of enzymes, in comparison with an aqueous extraction. The optimization of conditions using a response surface methodology improved the yield and allowed to study the influence of different extraction parameters simultaneously, notably the nature and the quantity of enzymes, the temperature and the time of extraction. This latter parameter was the most influent on extraction yield with the nature of the enzyme. The best antiherpetic activity was obtained with the extract after the action of a type of proteases with an EC50 of 86.0 ?g.mL-1. Moreover, a positive correlation between sulfated polysaccharides and the antiviral activity of extracts was demonstrated. For the first time, soft biotechnology with enzymes using surface response methodology has been performed in order to obtain water-soluble antiviral extracts from the red proliferative seaweed Solieria chordalis.