Journal of Clinical and Cellular Immunology

Journal of Clinical and Cellular Immunology
Open Access

ISSN: 2155-9899

+44 1223 790975


Melatonin Attenuates Free Radical Load and Reverses Histologic Architect and Hormone Profile Alteration in Female Rat: An In vivo Study of Pathogenesis of Letrozole Induced Poly Cystic Ovary

Seema Rai, Muddasir Basheer, Hindole Ghosh, Deepika Acharya and Younis A Hajam

Objectives: The present study was designed and conducted for obtaining information about the role of melatonin (Mel) in pathophysiology of polycystic cystic ovarian syndrome (PCOS) which generally leads to infertility in human females.
Methodology: Letrozole, a non-steroidal aromatase inhibitor supplemented (1 mg/100 g/body weight/day for 28 days) for induction of (PCOS). Treatment of exogenous melatonin (200 μg/100 g/body weight/day) was given to PCO and normal rats. After completion of experiment gravimetric analysis, Lipid peroxidation (LPO) in terms of thiobarbituric acid reactive substance (TBARS), histological slide preparation following hemotoxylene-eosin (HE) double staining method for ovarian tissue was done and results were documented. Hormonal assay estrogen (E), progesterone (P), and Melatonin (Mel), luteinizing hormone (LH) and follicle stimulating hormone (FSH) was performed using ELISA kit.
Major findings: Letrozole induced PCOS exhibited increase in ovarian weight, lipid peroxidation level (LPO). Histopathology of PCO rats showed sub-capsicular cysts and capsicular thickening. Circulatory hormone profiles showed a significant decrease in plasma level of E, P, Mel. Plasma testosterone (T) level was noted significantly high whiles an unsteady ratio of LH) and FSH in PCOS rats. Melatonin treatment to the PCO rats showed recovery in ovarian weight, significant decrease in lipid per oxidation (LPO), withdrawal of presence of cyst from ovarian histology, reversal of plasma circulatory hormone profile to the control group of rats.
Conclusion: The finding update about similarity of ovarian cysts in rats to that observed in human PCOS and their regression following exogenously melatonin administration. The present findings may indicate and novel therapeutic approach based on the modulation of pathogenicity of PCOS in female rats through melatonin to improve the functional ovarian physiology as a possible future molecule among human females to treat the infertility. Such clinical trials may really prove to be highly beneficial for women with PCOS.