GET THE APP

Genetic correlates of autoreactivity and autoreactive potential in human Ig heavy chains | Abstract
Immunome Research

Immunome Research
Open Access

ISSN: 1745-7580

Abstract

Genetic correlates of autoreactivity and autoreactive potential in human Ig heavy chains

Joseph M Volpe

Background: Immature bone marrow B cells are known to have longer CDR3 than mature peripheral B cells, and this genetic characteristic has been shown to correlate with autoreactivity in these early cells. B-cell Central tolerance eliminates these cells, but it is known that autoreactive B cells nevertheless appear commonly in healthy human blood. We examined over 7,300 Ig genes from Genbank, including those annotated by their discoverers as associated with autoreactivity, to determine the genetic correlates of autoreactivity in mature B cells. Results: We find differential biases in gene segment usage and higher mutation frequency in autoreactivity-associated Ig genes, but the CDR3 lengths do not differ between autoreactive and non-autoreactive Ig genes. The most striking genetic signature of autoreactivity is an increase in the proportion of N-nucleotides relative to germline-encoded nucleotides in CDR3 from autoreactive genes. Conclusion: We hypothesize that peripheral autoreactivity results primarily from somatic mutation, and that the genetic correlates of autoreactivity in mature B-cells are not the same as those for autoreactivity in immature B cells. What is seen in mature autoreactive B cells are the correlates of autoreactive potential, not of autoreactivity per se. The autoreactive potential is higher for V(D)J rearrangements encoded to a large extent by N-nucleotides rather than by the gene segments that, we posit, have been selected in germline evolution for their suppression of autoreactive potential.