Immunome Research

Immunome Research
Open Access

ISSN: 1745-7580



Cytokine Intervention: A Double Edged Sword in the Nkg2d System Regulation

Ana Montalban-Arques, Gregor Gorkiewicz, Victor Mulero and Jorge Galindo-Villegas

The natural killer group 2 members D (NKG2D) is an activating receptor which plays a major role in immune surveillance, and the detection and elimination of malignant tumors and infected cells. NKG2D acts over both arms of the vertebrate immune response, and is expressed in some human and mouse myelopoietic, γδ T, NKT and CD4+ cells, but is present in all NK and CD8+ T cells in humans and activated mouse CD8+ T cells. In humans, eight ligands which selectively bind to the NKG2D receptor have been identified. These ligands are not systemically expressed, but are triggered in response to stress and expressed only under specific pathological states. Several research results point to the importance of cytokines for increasing expression of NKG2D to restore the functionality of NK cells as well as their ligands in the target cells. However, the NKG2D system itself in an activated state, also release pro and anti-inflammatory cytokine transcripts to establish communication with other cells or for self-regulation. Additionally, type I antiviral interferon is largely produced. Such cytokine interactions could be regarded as a double edged sword. This behavior is emphasized by a discrepancy regarding the functionality of cytokines which interact with, or on the NKG2D system. Indeed, they seem to protect the host and rather can induce ligand expression, cell proliferation or dissemination of malignant tumors, generating complicated cytokine-mediated messenger loops which are far from being fully understood. Whatever the case, cytokines related to the NKG2D system could be an attractive and useful target for immunotherapeutic approaches. Thus, here we briefly review recent findings on the main aspects involved in the regulation of this system and, particularly, attempt to clarify the role played by cytokines in the activating or inhibitory function they exert over the NKG2D system in different contexts.