GET THE APP

Journal of Clinical and Cellular Immunology

Journal of Clinical and Cellular Immunology
Open Access

ISSN: 2155-9899

+44 1223 790975

Abstract

Characterization of In vitro Generated Human Polarized Macrophages

Salma Iqbal and Ashok Kumar

Objective: Contact with invading pathogens and/or tissue injury leads to the polarization of macrophages into either a M1 or a M2 state which is further divided into M2a, M2b and M2c subsets. The human macrophage subsets have been poorly characterized. The present study was undertaken to characterize macrophage polarization using a non-exhaustive panel of surface markers with respect to M1, M2a, M2b and M2c macrophages and production of pro- and anti-inflammatory cytokines in response to various toll-like receptors (TLR), ligands.
Methods: We generated various macrophage subsets by treating monocyte-derived macrophages (MDMs) with IFNγ (M1), IL-4 (M2a), LPS and IL-1β (M2b) or IL-10 (M2c) followed by stimulation with toll-like receptor (TLR)- 2, TLR-3 and TLR-4 agonists and analysis of surface marker and cytokines expression was carried out by flow cytometry and ELISA, respectively.
Results: M2a subset was characterized by CD14low, CD163low and TLR4low phenotype and produced high levels of IL-10. M2b subset was characterized by CD14high, CD80high and CD200Rlow phenotype and produced IL-6 prior to stimulation. M2c subset displayed a CD86low, CD163high phenotype and produced high levels of IL-10. M1 subset was characterized by CD80high, CD86high, CD163low and TLR4high phenotype and produced high levels of proinflammatory IFN-g, IL-12, TNFα and IL-23 following stimulation.
Conclusion: This study characterizes all four polarization states in human macrophages. Each polarization state demonstrated a unique cell surface marker profile and cytokine profile. These phenotypic markers can be used to characterize macrophage populations in tissue inflammatory disease conditions in vivo to further understand disease pathogenesis.

Top