GET THE APP

Anatomy & Physiology: Current Research

Anatomy & Physiology: Current Research
Open Access

ISSN: 2161-0940

Abstract

Ultrastructural Morphometry of the Aortic Depressor Nerves and Extrinsic Renal Nerves: Similarities and Differences between Mice and Rats

da Silva Carvalho C, Sato KL, Castania JA, Salgado HC, Nessler RA and Fazan VPS

Anatomical and physiological aspects involving rats and mice have shown similarities and differences between these experimental animal models. In cardiovascular physiology research, rats are being substituted by mice since mice are more susceptible to genetic manipulation. Nevertheless, little is known about mice normal anatomy and/or physiology to allow the correct interpretation of altered responses on genetically manipulated animals. We compared morphometric ultrastructural parameters of the aortic depressor nerve (ADN) and extrinsic renal nerve (SRN) between Wistar rats and C57BL/6J mice. After spontaneous activity recordings together with the arterial pressure pulse, ADN and SRN were dissected and prepared for light and transmission electron microscopy. Morphometry was performed with an image analysis software and took into consideration the fascicle area and diameter, myelinated and unmyelinated fiber number, density, area and diameter, myelin sheath area and the g-ratio. Comparisons were made for the same nerve between mice and rats and differences were considered significant when p<0.05. Both nerves were large in rats compared to mice, as were the myelinated fibers. On the other hand, unmyelinated fibers density, size and distributions were not different between species. These results suggest physiological differences on the fast conduction fibers between species, with possible different functional role. Morphological comparisons of the quantitative composition of peripheral nerves in different species and strains are very rare. Our study contributes to a morphological understanding of important nerves related to cardiovascular reflexes in two animal models. It also presents, for the first time, ultrastructural morphometric characteristics of the ADN in mice. This data provide a morphological basis for further studies involving functional investigations for reflex regulation of circulation in experimental model of hypertension and to improved cardiovascular system knowledge.

Top