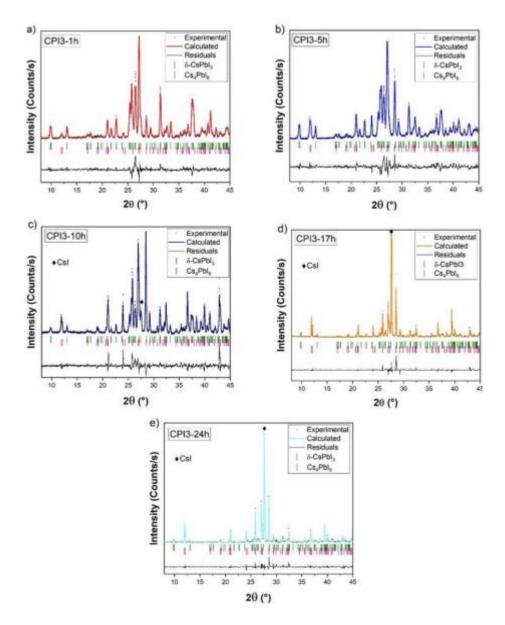
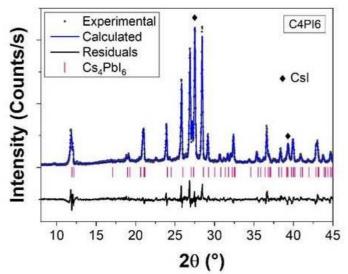
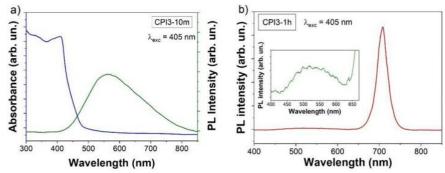

Classification and Segmentation of Breast Tumor using Mask R-CNN on Mammograms

Syed Kazim Raza*, Syed Shameer Sarwar, Saad Muhammad Syed, Najeed Ahmed Khan Department of Computer Science Information Technology, College of Computer Sciences, NED University, Pakistan, Karachi

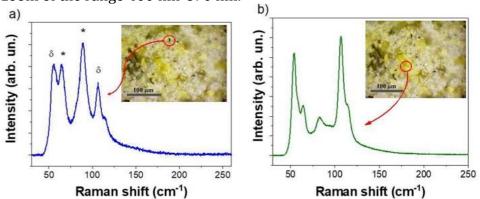

Correspondence to: Syed Kazim Raza, Department of Computer Science Information Technology, College of Computer Sciences, NED University, Pakistan, Karachi; E-mail: rkazim79@gmail.com **Received**: 23-Sep-2022, Manuscript No. JTDR-22-19343; **Editor assigned**: 26-Sep-2022, PreQC No. JTDR-22-19343 (PQ); **Reviewed**: 10-Oct-2022, QC No. JTDR-22-19343; **Revised**: 02-Jan-2022, Manuscript No. JTDR-22-19343 (R); **Published**: 09-Jan-2022, DOI: 10.35248/2684-1258.22.9.180 **Citation:** Raza SK, Sarwar SS, Syed SM, Khan NM (2022) Classification and Segmentation of Breast Tumor using Mask R-CNN on Mammograms. J Tumour Res. 9.180.

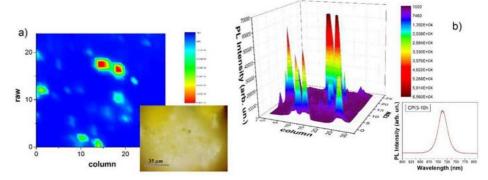
Copyright: © 2022 Raza SK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



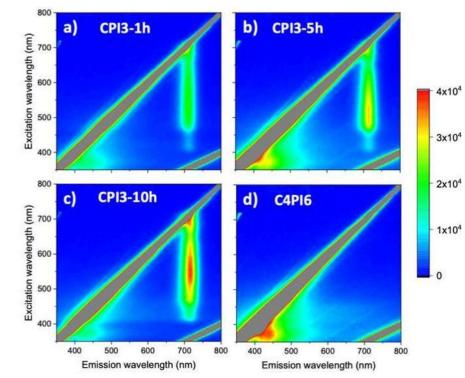

Supplementary data

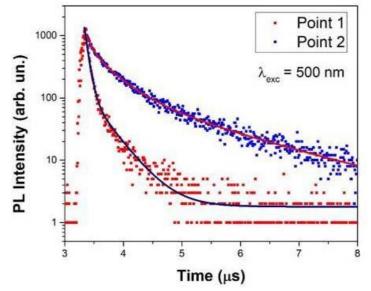
Supplementary Figure 1: Rietveld refinement of the sample CPI3-10 m at 400°C a) and at room temperature b).

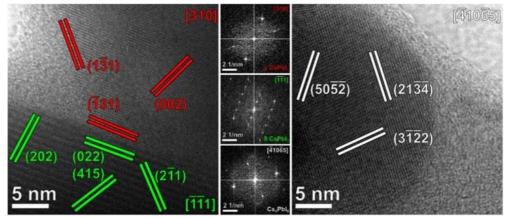


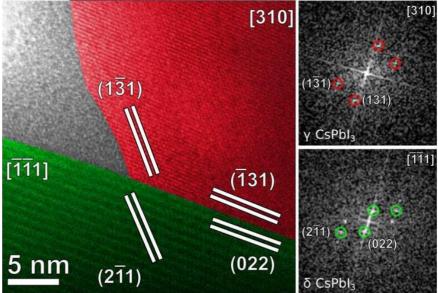


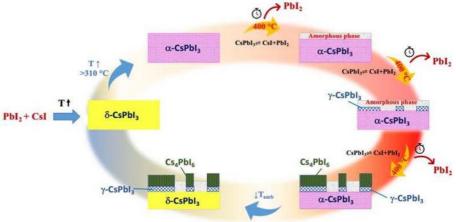
Supplementary Figure 3: Rietveld refinement of C4PI6 sample.


Supplementary Figure 4: Absorption and steady-state luminescence spectra of CPI3-10 m a) and steady-state luminescence spectrum of CPI3-1 h b). In the inset, a zoom of the range 400 nm-670 nm.


Supplementary Figure 5: Raman spectra of CPI3-10 h sample, $\lambda exc=785$ nm. a) Spectrum collected on a black spot, pointed out in the inset, with peaks of Cs4PbI6 (*) and CsPbI3 δ phase. b) Spectrum gathered on the yellow part of the sample, pointed out in the inset. The images were obtained with optical microscope imaging.


Supplementary Figure 6: Luminescence map of the emission at 715 nm of the sample CPI3-10 h: in a) a 2D map and in the inset the image by optical microscope. In b) a 3D map and in the inset the PL emission spectrum.


Supplementary Figure 7: 3D-Photoluminescence excitation spectra of different samples: a) CPI3-1h, b) CPI3-5h, c) CPI3-10h, d) C4PI6.


Supplementary Figure 8: Time resolved luminescence measurement on two different points of CPI3-10 h sample; $\lambda exc=500$ nm.

Supplementary Figure 9: Representative HRTEM images of the CPI3-10 h sample. Lattice planes of γ -CsPbI3, δ -CsPbI3, and Cs4PbI6 are indicated in red, green and white, respectively. The 2D-FFT diffracto grams used to calculate the orientations of each domain are reported in the central column.

Supplementary Figure 10: Epitaxy study on the interface between γ -CsPbI3 and δ -CsPbI3, previously reported in Figure 10. γ -CsPbI3 and δ -CsPbI3 crystal domains in the HRTEM image (left) are depicted in red and green, respectively. The diffraction spots in the 2D-FFT diffracto grams corresponding to the lattice planes used for the mismatch calculations are indicated according to the same color-coding.

Supplementary Figure 11: Model of the phase transition during the synthesis process and image of the sample after the synthesis.