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Introduction
Over the past several decades, a strong interest has developed in 

the identification and culture of arbuscular mycorrhizal (AM) fungi 
for their application in agricultural production systems [1-3]. Apart 
from disease resistance, AM fungi are known to enhance plant growth 
through promoting increased uptake of phosphorous and other 
relatively immobile mineral nutrients, e.g., zinc and copper [3,4]. The 
benefits of AM fungal colonization include increased tolerance of roots 
to soil-borne pathogens [5] and drought stress, while modifying the 
stomatal behavior of host plants under water deficit conditions [6,7], 
and increased protection from salt stress [8]. Growth response to AM 
fungi depends on their species composition, host plant species, cultivar 
and growing conditions [9-11].

Hydroponic greenhouse production constitutes an important 
segment of modern greenhouse industries in developed countries. 
It provides several advantages to the growers by allowing soilless 
growing of the plants on perlite, coco coir or vermiculite substrates, 
which facilitate robust root development, efficient water and 
nutrient absorption, and avoidance of diseases caused by soil-borne 
pathogens. In addition, hydroponic systems provide a controlled 
environment, which helps insure a continuous supply of high quality 
crops for national and international markets. Successfully expanding 
greenhouse production will enable the agricultural industry to meet 
the food demands of an ever-increasing population the world over. 
The crop production quality and quantity in a hydroponic greenhouse 
is essentially dependent upon optimal crop root health and efficient 
nutrient management, in addition to lighting, pH, EC requirements, 
sanitization, effective disease management and suitable pollination 
conditions, where required. The available literature on commercial 
products containing AM fungi for production enhancement covers 
mostly their roles in field crops and some in organic soil-based 
greenhouses [12-16] highlights the various aspects of production. 
However, efforts to prove their utility in hydroponic greenhouses 
are now emerging because of the need for improved disease control 

and more efficient management of photo-assimilates, both of which 
will result in better production efficiency and enhanced profitability 
for growers [3]. Also, greenhouse growers traditionally inject extra 
CO2 into the growing greenhouse environment, which is favourable 
for the plants. AM fungi are reported to assist in the management 
of surplus CO2 in greenhouses [17,18]. The CO2 enrichment and 
mycorrhizal effects help increase the photosynthetic activity of plants 
[17], while increased photosynthetic acclimatization effects following 
AM fungi application were observed in alfalfa [18]. AM fungi could 
be useful in hydroponic greenhouses where large-scale production of 
CO2 through fossil fuel combustion for heating and their potential 
emission into the environment, can be managed and be quite useful 
in environmental stewardship while also enhancing crop yields and 
quality.

This article discusses the utility of AM fungi in vegetable crop 
organic and hydroponic greenhouse production systems. A significant 
amount of work on field and organic crops utilizing AM fungi have 
proven their effectiveness in vegetable crops. The current article 
also addresses the major benefits of AM fungal application in non-
hydroponic greenhouses, such as disease mitigation and improved 
production, and envisages the idea of utilizing some of these benefits for 
hydroponic greenhouse crops by designing appropriate experimental 
trials and performing a cost-benefit analysis while conducting such 
trials. 

Abstract
Arbuscular mycorrhizal (AM) fungi are considered to be enormously important in contemporary agriculture and 

horticulture for their ability to improve crop disease and fertility management in commercial field and greenhouse 
crop production. Recently, commercial greenhouse producers have begun using AM inoculum to increase yields and 
provide sustainable growing conditions in organic and hydroponic production systems. However, strong evidence in 
support of their effectiveness in hydroponic production is still lacking. Future research is expected to address benefits 
of the use of AM fungi in hydroponic greenhouse crops, such as defense against pathogen, herbivore attack and the 
effective management of photo-assimilates by plants, which are essential for fruit production. In order to increase our 
understanding of the usefulness of AM fungi in hydroponic greenhouses, large-scale trial and a cost-benefit evaluation 
of the process are needed. This article discusses the use of AM fungi for improving organic and hydroponic greenhouse 
crop production and disease control, considering that AM fungi inoculations in soil-based greenhouses and fields have 
proven to be very effective.
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AM Fungi can Play a Significant Role in Crop Health 
Improvement

A compatible relationship established between AM fungi and 
host plants can lead to improved health of greenhouse crops. Also, 
the genotype of the cultivated crops shapes the species composition 
of AM fungal microflora leading to better prevention of disease 
outbreaks [19]. These ideas have been relatively unsupported in 
conventional agricultural systems, in favor of reliance upon the use 
of manufactured chemical pesticides for disease control. AM fungi 
coupled with rhizobacteria are proven to be very effective in disease 
and nutrition management [20,21]. Etesami and Alikhani have shown 
that co-inoculation of rhizosphere bacteria, such as Pseudomonas 
putida REN5 and Pseudomonas fluorescens with rice led to increased 
growth indices and N content compatible with full fertilizer rate 
equivalence [22]. They add that co–inoculation with these isolates 
decreased the application rate of N-fertilizer by up to 25% under in 
vitro and greenhouse conditions. Given the importance of AM fungi in 
agriculture, the current situation is changing, and a number of primary 
producers are using AM fungi inoculum to increase yields and improve 
production conditions, including pest management. AM fungi have 
also become the subject of hydroponic greenhouse experimentation, 
especially over the last decade [22-24]. 

AM fungi are invariably required for good crop health in many 
agricultural production systems [25,26]. AM fungi can utilize 10-40% 
of the carbohydrates, predominantly sugars, which the plant produces 
by photosynthesis, while inhabiting the roots of the majority of plants. 
The long mycelia of these fungi enhance the plant’s access to essential 
nutrients, such as phosphorus, nitrogen, potassium, zinc and copper, 
that would otherwise be available to the plant when only dissolved in 
water [27]. AM fungi achieve this by the formation of special structures 
called arbuscules [28], which, in turn, form through a complex 

interplay of strigolactones (SLs) and mycorrhizal factors [22,23]. The 
arbuscules are regarded as the functional site of nutrient exchange. An 
inadequate nutrient supply, which could cause reduced plant growth, 
can be alleviated to a great extent by the formation of arbuscules 
inside the cortex of plants [29]. Initially discovered as involved in the 
inhibition of axillary bud outgrowth, SLs incited a multitude of studies 
later showing that they also play a role in defining root architecture, 
secondary growth, hypocotyl elongation, and seed germination, 
mostly in interaction with other hormones. Their coordinated action 
with other hormones, such as auxins, cytokinins and gibberellins, 
which are known to drive growth, i.e., cell division leading to cellular 
proliferation (cytokinins), cell expansion (auxins) and elongation 
(gibberellins), chloroplast biosynthesis (cytokinins) etc., enables the 
plant to respond in an appropriate manner to environmental factors 
such as temperature, shading, day length, and nutrient availability [30].

Some important greenhouse crops that have been observed to 
display an increased tolerance to environmental stresses and diseases 
because of AM colonization are listed in Table 1. A literature survey 
of greenhouse research trials since 2002 where AM fungi have been 
employed for ensuring enhanced growth and yield of greenhouse 
grown vegetable crops are listed in Table 2. Presently, it is known 
that robust mycorrhizal growth leads to control of diseases due to a 
competition for space and nutrients in the soil and modification of root 
exudation, plant physiology and signaling [31], possibly preventing 
other pathogens from growing in the vicinity of the host plants. This 
may confer resistance to the invading disease-causing microbes. 
In addition, the secondary metabolites from a plant and fungal 
interactions play a crucial role in determining resistance to diseases 
in plants [21]. Possible mechanisms of action for plant secondary 
metabolites with antifungal effect could be mediated through induced 
systemic resistance and systemic acquired resistance processes 
[32]. Such secondary metabolites have been analyzed and found to 

Crop Plant (Species) AM Fungi Substratum 
condition Disease resistance against References

Tomato (Solanum lycopersicum Mill.) Glomus mosseae Not shown Meloidogyne hapla (N) Cooper and Grandison [111]
Water melon (Cucumis melo) G. intraradices Not shown M. incognita (N) Heald et al. [5]

Tomato (Solanum lycopersicum Mill.) G. mosseae Not shown M. hapla (N) Reddy et al. [112]
Tomato (Solanum lycopersicum Mill.) G. mosseae Not shown Phytophthora parasitica (F) Pozo et al. [68]

Asparagus (Asparagus officinalis) Gigaspora margarita, G. 
fasciculatum and Glomus sp. Not shown Fusarium oxysporum (F) Matsubara et al. [113]

Tomato (Solanum lycopersicum Mill.) G. mosseae Not shown Meloidogyne incognita (N) Talavera et al. [114]
Asparagus (Asparagus officinalis) G. mossiae Not shown F. oxysporum (F) Matsubara et al. [115]

Tomato (Solanum lycopersicum Mill.) G. mosseae Not shown M. incognita (N) Diedhiou et al. [116]
Cucumber (Cucumis sativus L.) G. etunicatum Not shown F. oxysporum (F) Hao et al. [82]

Tomato (Solanum lycopersicum Mill.) G. monosporum and G. 
mosseae

Hydroponic 
greenhouse

F. oxysporum f. sp. radicis-lycopersici 
(F) Utkhede [63]

Pepper (Capsicum annum L.) G. mosseae Greenhouse Phytopthora (F) Ozgonen and Erkilic [117]

Melon (Giotto melon L.) Glomus spp. Seedling nursery 
on peat F. oxysporum (F) Martinez-Medina et al. [118]

Strawberry (Fragaria × ananassa Duch., 
‘Nohime’) G. mosseae Greenhouse

Fusarium oxysporum f. sp. fragariae 
and Colletotrichum gloeosporioides 

(F) 
Li et al. [119]

Pepper (Capsicum annum L.) G. mosseae and Trichoderma 
koningii

Greenhouse soil 
based F. oxysporum (F) Oyetunji and Salami [120]

Onion (Allium cepa) G. aggregatum and T. 
harzianum Pot culture S. cepivorum  (F) Leta and Selvaraj [121]

Cucumber (Cucumis sativus L.) G. intraradices Greenhouse Pot 
Culture Pythium delicense (F) Küçükyumuk et al. [122]

Tomato (Solanum lycopersicum Mill.) Funneliformis mosseae Pot culture Alternaria solani (F) Song et al. [66]

Table 1: AM fungi application on important routinely grown vegetable greenhouse crops for disease resistance, showing that AM fungi has potential to control diseases in 
vegetable greenhouse crops.



Citation: Mishra V, Ellouze W, Howard RJ (2018) Utility of Arbuscular Mycorrhizal Fungi for Improved Production and Disease Mitigation in Organic 
and Hydroponic Greenhouse Crops. J Hortic 5: 237. doi: 10.4172/2376-0354.1000237

Page 3 of 10

Volume 5 • Issue 3 • 1000237J Hortic, an open access journal
ISSN: 2376-0354

Host-plant species Inoculum composition Yield increase Plant nutrition 
improvements Reference

Allium fistulosum  Claroideoglomus etunicatum BEG168, Rhizophagus intraradices 
BEG141 and Funneliformis mosseae BEG167 Shown Shown Guo et al. [123]

Cucumber (Cucumis sativus) Funneliformis mosseae, Rhizophagus intraradices and Diversispora 
epigaea Shown Shown Wang et al. [124]

Manihot esculenta Rhizophagus intraradices 11AG8903 not measured Not shown. Carretero et al. [125]

Allium porrum Rhizophagus irregularis DAOM197198 and Diversispora epigaea 
DAOM196672 not measured Shown Liu and Dalpé [126]

Plantago atrata, Pulsatilla 
slavica, and Senecio 

umbrosus

Acaulospora bireticulata, Entrophospora baltica, Acaulospora paulinae, 
Claroideoglomus claroideum, Septoglomus constrictum, Diversispora 

trimurales, Ambispora gerdemannii, Archaeospora trappei Septoglomus 
constrictum, Septoglomus deserticola, Glomus macrocarpum, 

Scutellospora dipurpurescens, Acaulospora gedanensis, Acaulospora 
mellea, Funnelliformis caledonium and Claroideoglomus claroideum

not measured Shown Zubek  et al. [127]

Dioscorea spp. Funneliformis mosseae, Septoglomus deserticola, and Acaulospora 
laevis Shown Shown Dare et al. [128]

Allium fistulosum  Claroideoglomus etunicatum and Diversispora epigea Shown Shown Shen et al. [129]
Allium spp. Rhizophagus intraradices not measured not measured Galván et al. [130]

Capsicum annuum Claroideoglomus etunicatum, Rhizophagus clarus, Rhizophagus 
intraradices, Funneliformis caledonium and Funneliformis mosseae not measured Shown Ortas et al. [131]

Solanum lycopersicum 

Claroideoglomus etunicatum BEN101, Claroideoglomus etunicatum 
BEN102, Claroideoglomus etunicatum BEN104, Claroideoglomus 
etunicatum BEN105, Glomus hoi BEN131, Glomus hoi BEN132, 

Glomus hoi BEN133, Claroideoglomus claroideum BEN143, 
Acaulospora scrobiculata BEN201, Acaulospora scrobiculata BEN202, 

Acaulospora spinosa BEN211, Acaulospora spinosa BEN212, 
Acaulospora spinosa BEN213, Acaulospora sp. BEN222, Acaulospora 
sp. BEN223, Kuklospora kentinensis BEN302, Kuklospora kentinensis 

BEN301, Funneliformis mosseae BEN111, Funneliformis mosseae 
BEN112, Sclerocystis sinuosa BEN122

not measured not measured Affokpon et al. [132]

Solanum lycopersicum Funneliformis mosseae, Funneliformis caledonium, Septoglomus 
viscosum, Rhizophagus intraradices and Funneliformis coronatum Shown Shown Copetta et al. [133]

Allium sativum Rhizophagus fasciculatus and Funneliformis mosseae Shown Shown Patharajan and Raaman 
[134]

Piper longum
Rhizophagus fasciculatus, Funneliformis mosseae, Glomeraceae sp., 
Rhizophagus clarus,  Claroideoglomus etunicatum and Diversispora 

epigaea
Shown Shown Singh and Gogoi [135]

Capsicum annuum Rhizophagus irregularis DAOM197198 not measured Shown Beltrano et al. [136]

Macadamia tetraphylla Glomeraceae sp., Acaulospora sp., Gigaspora sp. and Scutellospora 
sp. Shown Shown Yooyongwech et al. 

[137]

Prunus armeniaca Rhizophagus fasciculatus, Funneliformis mosseae, Glomus 
macrocarpum and Sclerocystis dussii not measured Shown Dutt et al. [138] 

Solanum lycopersicum 
Claroideoglomus etunicatum KE118, Gigaspora gigantea VA105, 

Septoglomus deserticola FL912, Claroideoglomus claroideum ML108 
and Funneliformis mosseae FR113 

Shown not measured Udo et al. [139]

Allium cepa 

Funneliformis caledonium BEG20, Funneliformis mosseae BEG12, 
Rhizophagus manihotis FL879, Rhizophagus irregularis BEG144, 

Paraglomus occultum WV224, Racocetra fulgida VA103B and 
Acaulospora spinosa NC501 

not measured Shown Gosling et al. [140]

Eriobotrya japonica Acaulospora laevis, Funneliformis mosseae and Funneliformis 
caledonium Measured Shown Zhang et al. [141]

Allium cepa
Funneliformis mosseae BEG12, Rhizophagus manihotis FL879, 

Rhizophagus irregularis BEG144, Diversispora epigaea BEG47 and 
Acaulospora spinosa WV861A

Shown Shown Taylor et al. [142]

Allium fistulosum  Rhizophagus clarus CK001 not measured Shown Sato et al. [143]
Cyclamen purpurascens Septoglomus constrictum Shown Shown Rydlová et al. [144]

Panicum turgidum Funneliformis mosseae, Rhizophagus intraradices and Claroideoglomus 
etunicatum Shown Shown Hashem et al. [145]

Solanum lycopersicum Funneliformis mosseae BEG12 and Rhizophagus irregularis BB-E Shown Shown Hart et al. [146]
Sorghum bicolor, Allium 

tuberosum, C. annuum and 
Daucus carota

Scutellospora heterogama, Acaulospora longula, and Funneliformis 
mosseae not measured Shown Kim et al. [147]

Table 2: A brief survey of greenhouse trials conducted on the utility of AM fungi on different vegetable crops grown in soil and/or artificial media in the greenhouse over 
past ten years, demonstrating their utility in yield increase and plant nutrition acquisition. This survey shows that various greenhouse crops are amenable to yield increase 
through nutritional improvement by recruiting suitable AM fungi.
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be hormones, antifungal metabolites, as well as the metabolites of 
mutualistic interactions observed between plants [21,33]. The soil 
rhizosphere is a battlefield of microflora and microfauna communities 
in a tri-partite scheme consisting of beneficial microorganisms, 
pathogens and the plants that interact with pathogens and influence 
the outcome of pathogen infection [34]. Pérez-de-Luque et al. have 
demonstrated that interactions between roots, mycorrhizal fungi 
and plant growth-promoting rhizobacteria (PGPRs) synergistically 
effect growth and systemic disease resistance in plants [35]. This 
enhanced defensive capacity in response to infection by arbuscular 
mycorrhizal fungi is known as ‘mycorrhiza-induced resistance’ (MIR). 
This interaction provides systemic protection against a wide range of 
pathogens and shares characteristics with systemic acquired resistance 
(SAR) after pathogen infection and induced systemic resistance (ISR) 
following root colonization by non-pathogenic rhizobacteria [36]. 
AM fungi can suppress plant pests and diseases through induction of 
systemic resistance [37-39]. Research over the last decade has shown 
that engineering the arable soil microbiome through the use of selected 
genotypes has had positive effects on the soil biotic environment and is 
conducive to plant health [2,40,41].

It is commonly assumed that fungal stimulation of the plant immune 
system is solely responsible for MIR. MIR is a cumulative effect of direct 
plant responses to mycorrhizal infection and indirect immune responses 
to ISR-eliciting rhizobacteria in the mycorrhizosphere [42]. PGPRs induce 
various mechanisms that can affect plant growth. These mechanisms 
include nitrogen fixation, phosphorus and zinc solubilization [43]. In 
non-limiting conditions of light, water and mineral nutrients, cytokinins 
secreted by PGPR are known to drive plant growth by expediting the 
processing of metabolites through the various plant cell cycle checkpoints, 
resulting in production of more cells [43]. 

Soil is the seat of interactions between bacteria and fungi, which 
establishes a communication network to keep microhabitats in 
balance. Prominent mediator molecules of these interactions are 
inorganic and organic microbial volatile compounds (mVOCs) 
and about 300 bacteria and fungi are known as VOC producers and 
approximately 800 mVOCs were compiled in DOVE-MO (database 
of volatiles emitted by microorganisms) [44]. PGPRs are also known 
to secrete phytohormones, such as cytokinins, and could be cultured 
and developed as a biofertilizer [43]. Plant-originated cytokinins, 
already known for promoting cell division, nutrient mobilization 
and leaf longevity [45] are considered to mediate plant immunity 
through salicylic acid (SA) signaling [46]. During pathogen attacks, 
plants trigger a hypersensitive response by the activation of cytokinin 
biosynthetic gene ipt, which rapidly kills cells near the infection site 
and deprives the pathogen of nutrients, thus preventing its spread [47]. 
The study by Novák et al. has elucidated a diverse set of processes that 
link ipt activation to necrotic lesion formation, while evaluating the 
potential of cytokinins as signals and/or mediators in plant defence 
against pathogens [47]. Cytokinins are known to recruit a downstream 
subset of signaling components, which regulate processes such as cell 
proliferation and the defense response [48]. Currently, several lines 
of investigation are needed to elucidate a clearer picture of cytokinin-
induced defense responses to a variety of plant pathogens [50]. It is 
believed that microorganisms contain over 30 growth-promoting 
compounds from the cytokinin group along with 100 gibberellic acids 
and other groups of hormones [49] which could possibly be very 
important to help plants withstand environmental stresses, including 
pathogen-based stressors. Some investigations have also established 
cytokinin and/or auxin associations of fungal pathogens of plants 
[50]. However, more research with respect to cytokinins, auxins 

and fungal phytopathogens needs to be carried out to completely 
understand the mechanism involved in this interaction. Plant-
associated bacteria provide another set of benefits by initiating biofilm 
formation and biosurfactant activity, which are enormously important 
in the biocontrol of disease-causing pathogens. Furthermore, this 
relationship should prompt the study of ‘green’ chemicals, such as 
bacteria-mediated biosurfactants and their application in biocontrol of 
pathogens [49]. 

In addition to flavonoids and strigolactones present in the root 
exudates of plants, the AM fungi also release signal molecules, 
identified as lipochito-oligosaccharides or Myc factors, which stimulate 
root growth and branching [51]. Host plants and microbes are capable 
of producing a wide range of volatile organic compounds, consisting 
of volatile plant hormones, such as ethylene, methyl jasmonate, and 
methyl salicylate, which function as airborne signals in mediating 
plant communication, thus playing a significant role in biocontrol. 
The symbiosis between fungi and plants is known to establish a 
molecular dialogue, which benefits the host plants by the activation of 
antioxidant, phenyl propanoid or carotenoid pathways [52]. AM fungi 
are preferentially selected by biologically active compounds, which are 
released by the host plant exudates (Figure 1) [53]. 

AM Fungi and their Impacts on Greenhouse 
Horticultural Crops 
Bedding plants

Bedding plants are a group of rapidly growing ornamental plants 
that are typically placed into flower beds that create colorful displays 

Figure 1: Percentage of inhibition of spore germination by the fractions of plant 
root extracts analysed through HPLC using 25% MeOH for solubilizing them, 
in two isolates of AM fungi (a) G. etunicatum and (b) G. rosea. Stars indicate 
a statistically significant difference from the control (Student's t test, P<0.05) 
(adapted from Ellouze et al. [53], with author’s permission). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Nov%C3%A1k J%5BAuthor%5D&cauthor=true&cauthor_uid=23644362
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during spring, summer or winter depending on their geographical 
location. Generally, these plants consist of annuals, biennials or tender 
perennials. Bedding plants can be grown in soil-based and peat-based 
media. Alternative production systems, such as soilless culture and 
where AM fungi have been used to benefit the plants, have been used 
less frequently. Ethylene, a colorless and odorless gas, is responsible 
for preventing flowering, shortening internode length, increasing 
branching, initiating fruit ripening, triggering leaf and flower senescence 
and abscission, causing leaf chlorosis (yellowing), and improving 
adventitious rooting [54]. Some crops are relatively insensitive to 
ethylene while others are very sensitive. Mycorrhizal colonization in 
a soilless medium (peat-based) significantly increased flower vase-life 
and decreased flower ethylene production of a bedding plant named 
Maryland White. Cultivar-specific ethylene production due to AM 
fungal activity in bedding plants has been reported [55]. For example, 
in snapdragon cultivars, the reduction in ethylene production caused 
by mycorrhizal colonization was highly variable based on cultivar 
selection. Koide and Besmer showed that an increase in fertilizer 
P concentration together with AM fungal colonization resulted in 
increased ethylene production [55]. In another study, the AM fungus 
Glomus constrictum Trappe was observed to increase growth, flower 
pigments and phosphorous content of marigold (Tagetes erecta) 
plants, grown under different levels of drought stress. Plant growth, 
phosphorous uptake, and plant productivity of AM fungi-treated 
plants were improved under drought stress levels [56]. Furthermore, 
their study showed that the total pigments of mycorrhizal plants grown 
under well-watered conditions were 60% higher, thus reinforcing the 
utility of AM fungi in bedding plants. Heidari and Nazarideljou [57] 
showed a significant and positive symbiosis between Glomus mosseae 
and zinnia plants, which led to improved flower quality. In another 
study, Heidari et al. analyzed the positive and significant effects of AM 
fungi on morpho-physiological traits under different irrigation regimes 
compared to the control treatment (without AM fungi) [58]. Increased 
drought stress was responsible for improved flower morphology, 
pigmentation and plant physiology. 

AM fungal utility in hydroponic greenhouses

Hydroponic greenhouses utilize nutrient recirculation systems to 
reduce environmental pollution resulting from the discharge of unused 
fertilizer solutions. However, this can increase the risk of attack by 
root pathogens because inoculum is distributed by the re-circulating 
nutrient solution. Presence of mycorrhizal fungi may reduce diseases 
caused by pathogens [59], while promoting plant growth, yield and 
quality [60]. Understanding individual vegetable crop-specific cases 
based on available information would address the gaps in awareness 
of the utility of AM fungi in hydroponic greenhouses and allow us 
to manage them through devising ingenious research strategies. The 
crops considered for such studies were as follows:  

Tomato: A popular vegetable, tomato is known to be rich in 
beneficial anti-oxidant compounds for human health. Horticultural 
practices employing AM fungi are expected to influence the 
concentration of these secondary metabolites through increased 
nutrient and water absorption by plants. An experiment, performed 
under glasshouse conditions by Ulrichs et al., examined whether 
organically grown ‘Vitella F1’ tomatoes differed in their fruit content 
of lycopene, β-carotene and total phenols from that found in 
conventionally grown tomatoes [61]. In their study, tomato plants 
inoculated with AM fungi (Glomus sp.) showed higher lycopene 
content in fruits, increased β-carotene and total phenolic contents with 
an increased root fresh weight. Tahat et al., studied the ability of AM 

fungi to colonize tomato (Lycopersicum esculentum. Mill) roots under 
glasshouse conditions while using Glomus mosseae, Scutellospora sp. 
and Gigaspora margarita in their study [62]. They showed that AM 
fungi colonized tomato roots from G. mosseae (80%) to G. margarita 
(20%). 

The tomato crop is mostly vulnerable to root and crown rot in 
hydroponic greenhouses, primarily due to infections with Fusarium, 
Pythium and Phytophthora. Limited research has been conducted 
on the potential of AM fungi to control these diseases on tomatoes 
grown hydroponically in commercial greenhouses (Table 1). Research 
trials on tomato plants treated with G. monosporum and G. mosseae 
reduced Fusarium oxysporum f. sp. radicis-lycopersici (FORL) infection 
on tomatoes, while producing significantly higher fruit yields and 
fruit numbers [63,64]. Several explanations have been given to 
the mechanisms elucidating the pathogen resistance developed in 
tomatoes due to AM fungal inoculation. Al-Raddad, proposed that 
AM fungi-inoculated plants had increased disease resistance possibly 
due to morphological alterations, such as thickening of the cell walls 
by lignification [64], while Dehne and Schoenbeck observed that 
tomato plants inoculated with AM fungi became more resistant 
due to increased lignin synthesis around the stele region [65]. They 
assumed that lignification was caused by increased phenol synthesis 
by the tomato plants. Furthermore, hydrolytic enzymes, such as β-1, 
3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and 
lipoxygenase (LOX) in tomato leaves were attributed to be playing a 
vital role in plant development, morphogenesis, plant microbe signaling 
and antifungal activities upon AM fungi pre-inoculation followed 
by pathogen inoculation [66]. Two additional basic b-1, 3- glycanase 
isoforms were also reported by Pozo et al. on tomato plant roots 
pre-inoculated with G. mosseae and post-infected with Phytophthora 
parasitica [67]. While explaining the possible mechanism of disease 
resistance due to AM fungi application in tomatoes, Caron et al. found 
that increased phosphorous concentration was not responsible for 
inducing this resistance [68].

Scientific studies describing field trials on tomato, eggplant and 
pepper seedlings employing Glomus spp., including G. fasciculatum, G. 
monosporum and G. mosseae inoculations, were performed by Dasgan et 
al. [69]. They used G. fasciculatum in a hydroponic greenhouse system to 
determine its effects on tomato growth, yield, fruit properties, nutrient 
uptake and substrate ion accumulation of plants. A significant increase 
in the fruit yield and improved fruit size was found with mycorrhizal 
inoculation due to an effective use of photo assimilates by these tomato 
plants, which was essential for fruit production. Their conclusion that 
mycorrhizal inoculations were useful in alleviating deleterious effects 
of re-cycling soilless systems for tomato crop production was very 
important from a grower’s stand-point, since they have to re-circulate 
the soilless systems (nutrient solution). Furthermore, mycorrhiza 
created a superior nutritional status by increasing the amounts of 
ascorbic acid and soluble sugars by solubilizing the P in the tomato 
plants [70]. In a greenhouse experiment, AM fungal inoculation with 
BIOCULT mycorrhiza granules (consisting of both G. etunicatum 
and G. intraradices) made on ‘Rodade’ tomatoes, exhibited superior 
transplant performance due to their higher shoot fresh weight, high 
shoot/root ratio, higher root biomass and higher root growth rate [71]. 
In a recent report Ziane et al. envisaged the importance of AM fungi in 
facilitating optimal fertilizer utilization in order to achieve satisfactory 
growth and yield of a tomato crop [72]. Additionally, they suggested 
that the application of AM fungi could compensate for the reduction 
in chemical fertilizers, thus offering a more sustainable farming system 
that was respectful of the environment. The role of Plant Growth-
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Promoting Microorganisms (PGPM), which includes AM fungi, 
has been demonstrated in hydroponically grown soybean where an 
efficient production enhancement was achieved through an increase in 
photosynthetic activity [73]. N uptake by AM fungi in tomatoes has 
been proven to confer a competitive advantage and to fine tune the 
growth-defense balance for the host in N-depleted root environments 
[74]. 

Cucumber: AM fungi have been found to be equally useful for 
cucumbers, another important crop for greenhouse vegetable markets. 
In this crop, they enhance the efficiency of nutrient acquisition 
and overall growth rate in order to permit more efficient sequence 
cropping throughout the year [75]. AM fungal symbiosis with 
cucumber plants helped in taking up nutrient, salts and water from 
the soil (in a soil-based container system) and made them available 
to the plant partner [75,76], while the fungus obtained the essential 
carbohydrates produced during photosynthesis from the plants [77]. 
This increased the ecological and the physiological fitness of the 
plant [78] and increased growth, health and crop yield in cucumbers 
[79,80]. AM fungi also enhanced tolerance against soil-borne diseases 
[81-85], pests and nematodes [86,87], and also increased drought 
tolerance and reduced water consumption [88]. Recently, AM fungi 
have been known to enhance silicon-based plant defenses against root 
herbivores through interactions involving multiple mechanisms that 
require further research [89]. However, there is absence of effective 
symbiotic fungi in commercially available growth substrates, which 
often limit plant growth and yield in commercial greenhouses. There 
is also a lack of published information on the value of AM fungi in 
greenhouse cucumber production (Table 2), which is surprising 
in view of the importance of this crop to the greenhouse vegetable 
industry and to our knowledge of the growth-enhancing effects of 
AM fungi in general. The efficacy of AM fungi to enhance growth of 
greenhouse cucumber from seeding through fruit production needs 
to be considered. Trimble and Knowles, investigated greenhouse 
cucumber growth following infection by three species of AM fungi 
under varying levels of P nutrition [90]. They specifically analyzed 
the allocation of soluble carbohydrates and N within plants due 
to the presence of AM fungi. Their findings suggested that plant 
phosphorous status guides the efficiency with which plants take up 
and assimilate nitrogen (N) [91] and is also key to the partitioning of 
carbohydrates [92-94]. 

Lettuce, eggplant and pepper: The association of lettuce with 
AM fungi benefited plant growth and increased the content of copper, 
iron, anthocyanins, carotenoids and, to a lesser extent, phenolics 
in mycorrhizal compared to non-mycorrhizal plants, which are 
potentially beneficial for human health [52,95,96]. The parameters for 
measuring the effects of AM fungi on plant growth, plant height, shoot 
fresh weight, total yield, fruit size and length of leaf blade were used, 
and the shoot fresh weight of eggplant was found to increase up to 47%, 
28% and 29% by inoculating with G. mosseae, G. monosporum and G. 
fasciculatum, respectively, while total yield per plant was increased up 
to 60%, 43% and 7%, respectively [64]. The most effective fungus was 
G. mosseae, which improved plant growth of the three inoculated crops 
(lettuce, eggplant and pepper) in the experiments conducted by Al-
Raddad [64], although G. fasciculatum was the most efficient isolate 
in colonizing roots of eggplant and peppers. Douds et al. found that 
AM fungal inoculation of eggplant crops significantly increased the 
yield of fruit [97]. They recommend that the routine use of AM fungal 
inoculum could increase the yield of eggplant with minimal changes to 
the grower's normal practices. 

Major challenges in the use of AM fungal inoculants

Over the past few decades, companies throughout the world have 
manufactured and commercialized AM fungal inoculants using either 
a single AM species or mixtures of species that may include PGPR or 
other symbiotic and/or biocontrol fungi [98]. Industrial manufacturing 
of AM fungi as crop inoculants is a relatively new undertaking and, 
despite the practical demonstrations of their efficiency (Table 2), 
their adoption by crop producers has been slow, most likely due to 
concerns over the cost, quality and efficiency of marketed products. 
One of the main issues with the use of commercial AM fungi 
inoculants in agriculture is related to their performance under specific 
local conditions. Native AM fungi species are often considered to be 
mutualistic [99-102]. Faye et al. have evaluated the need to pre-evaluate 
commercial mycorrhizal inoculants on a selected crop and regional soil 
types before launching large-scale field use [103]. AM fungi-containing 
products are rarely used in commercial agriculture because of: (a) 
difficulties in producing AM fungal inoculum in large quantities, (b) 
their beneficial effects, and (c) uncertainties about possible negative 
impacts of added AM fungi to the resident AM fungi populations [104].

In order to improve the use of commercial inoculants, 12 AM 
fungi were evaluated in greenhouse by Robinson Boyer et al. [104]. 
They propagated the commercial mycorrhizal inoculants in a trap 
pot culture under sterilized sand to evaluate mycorrhizal potential for 
maize (Zea mays L.) root colonization, while comparing them with an 
indigenous soil inoculum. Their findings revealed that three inoculants 
significantly increased root colonization levels compared with the soil 
inoculum. Thirteen fungal strains were subjected to extraction in their 
studies from the pot culture survey, which also included five undeclared 
species and four declared species, which did not produce spores. In their 
second experiment, commercial products were inoculated into soil to 
assess their impact on maize growth and yield. Their major finding was 
that inoculants increased root colonization levels and also increased the 
shoot biomass of maize plants albeit slightly. This information should 
allow researchers to experiment with the methodologies for hydroponic 
greenhouse crops, where pre-AM fungal-colonized substrates can be 
used effectively and by mitigating the challenges of competition by the 
indigenous soil inoculum. Additionally, the application of AM fungi in 
hydroponic greenhouse crops will possibly help reduce challenges such 
as economic concerns envisioned by commercial vegetable growers, 
which may be encountered in pre-evaluating commercial mycorrhizal 
inoculants on selected crops and in regional soils before launching 
large-scale field use. A study using AM fungi and synthetic fertilisers on 
sunflower plants showed a greater plant height, stem diameter and leaf 
chlorophyll content, whereas there was increased mycorrhizal hyphal 
and arbuscular growth when AM fungi and organic fertilizers were 
used together [105]. Abobaker et al. demonstrated clearly that AM 
fungi had beneficial effects on plant growth albeit without also having 
significant use of organic fertilizers [105].

Potential gains from using AM fungi on greenhouse crops 

Berruti et al. have reviewed the amount of work carried out thus 
far on the use of AM fungi in greenhouses vs. in open field areas. They 
suggested that 65% of the experiments carried out up to 2015 were 
in greenhouses, while 24% were in open-field conditions [106]. They 
found that fungal colonization gain in inoculated plants, compared 
to non-inoculated controls, was significantly more frequent in the 
greenhouses than in open-fields. They tentatively attributed this to 
the pre-existing AM fungal propagules in the field plots, while control 
pots in greenhouses with sterilized substrates were free of AM fungal 
propagules or were highly reduced in AM fungal diversity. Interestingly, 
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it was observed that the root biomass benefitted more from inoculation 
in field conditions than in greenhouses [106]. This was probably due to 
the fact that containerized roots stopped growing because of constraints 
imposed by pot boundaries at a certain point in time during cultivation. 
In addition, the containerized inoculated plants were more likely to rely 
massively on fungal-mediated uptake [107] and reached a maximum 
level of exploration of the substrate sooner than non-inoculated plants, 
without increasing the root biomass. However, they advocated that the 
effectiveness of AM fungal inoculation on shoot biomass, yield, and 
plant nutrition did not seem to be equally successful in greenhouse and 
open-field conditions [106]. Here, it seemed important to supplement 
containerized or hydroponic, pre-grown, AM fungal substrates with 
lower amounts of exogenous nutrients (fertilizers containing N and P) 
as has been done by researchers to increase the nutritional quality of 
the vegetable crops [107,108].

Conclusion
Mycorrhizal fungi have been shown to be capable of making 

nutrients available to plants and providing a better transplant 
performance by offering higher shoot fresh weight, high shoot/root 
ratio, higher root biomass and higher root growth rate. In addition, 
protection from diseases caused by root pathogens is a major benefit 
that AM fungi could offer in both containerized and hydroponic 
production systems. Once AM fungi colonize the plants, they remain 
with the root systems and can be transferred into other soil/substrate 
locations and plantings on the infested roots. Future multi-location 
experimental trials on the application of AM fungi in hydroponic 
greenhouse systems utilizing the various types of production systems 
discussed in this article could promote more widespread and successful 
use of this technology. Furthermore, cost-benefit analyses of this 
technology would increase awareness among the potential end-users 
of the benefits of AM fungal inocula. The successful colonization of 
AM fungi in hydroponically grown vegetable crops has met with both 
success and failure. However, the information discussed in this article 
could assist scientists in gaining insight on the potential utility of AM 
fungi and to help them to plan and interpret the results of scientific 
trials on vegetable crops grown in hydroponic greenhouses.

Urbanization may lead to an upsurge in human population to 
over 5 billion by 2030 [109]. Popularizing hydroponic greenhouse 
production through disease and nutrient management experimental 
trials could contribute to vegetable crop production in a significant way. 
These endeavors could further be assisted with developing technologies 
such as rooftop plant production systems, which allow growers to grow 
food crops and ornamental plants using hydroponic greenhouses 
[108]. Scientific studies have revealed that AM fungi have proven their 
utility as a sustainable alternative to the use of conventional chemical 
fertilizers in urban farming, especially green roof manuring [97]. The 
concepts derived through trials on the lines discussed in the current 
article could help commercial greenhouse growers to better meet the 
needs of a rapidly growing population of urban consumers.
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