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Abstract

Introduction: The Hepatitis B virus (HBV) is very common, and has been difficult to treat, mainly because of
the high mutation rate of the polymerase gene of its reverse transcriptase. The aim of our study was to use Bayesian
statistics to determine the positions of mutations within the HBV genome.

Material and methods: The sequence data was derived from 73-treatment naive and 215 treatment failures, of
various drugs, from patient data provided by collaborators at the University of Tor Vergata. The Metropolis-Hastings
algorithm was applied to the data to determine the mutation locations that correlate with drug resistance.

Results: For amino acid positions 80-250, nineteen positions were shown to have mutated in the treatment
failure group. Fifteen of the nineteen positions were in the D genotype of HBV, while the other four were within the A
genotype originating from the drug lamivudine (LMV). For amino acid positions 250-344, sixteen positions were

mutated with seven of the sixteen originating from LMV in the D genotype. Four mutations originated from LMV in
the A genotype.

Conclusion: This research identified previously unknown mutation positions and confirmed positions identified
in previous research. Collaborators at the University of Rome, Tor Vergata, have validated the mutated positions
experimentally with a 454-pyrosequencer. It is hoped that knowledge of these mutations would lead to improved

treatment options. Also, with increased availability of genomic data, future research can be done on a larger HBV
dataset and for other diseases.
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Introduction

%)

The Hepatitis B virus (HBV) is fairly common, infecting more than
2 billion people worldwide, including over 300 million carriers of the
virus [1]. It is passed through the blood/blood-derived body fluids
through percutaneous and permucosal means [2]. This virus can cause
chronic infection, and, along with HCV, is the major causative factor
for liver transplants.
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The liver is vital to life, with over 500 diverse physiological
functions including bile production, nutrient metabolism, drug
processing, ammonia conversion, and coagulation factor creation [3].

Therefore, it is important that scientists identify and resolve causes of
liver disease.

Figure 1: Genomic Structure of HBV [5].

HBYV is a circular DNA virus that is partially double stranded. It
replicates via an RNA intermediate, and, like HIV, contains a reverse-
transcriptase (RT) enzyme [4] (Figure 1).

The Hepatitis B virus is divided into eight genotypes, A-H, based on

overall sequence variation of the genome. In this analysis, only
sequence data from genotypes A and D were used.
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Like HIV, HBV has proven to be difficult to treat, mainly because of
the high mutation rate of the polymerase gene of its reverse
transcriptase [6]. Previous work by Zhang et al employed Bayesian
statistics to determine the positions of mutations in the HIV genotype
[7]. Whereas HIV mutates at a much faster rate than HBV, the same
statistical method was successfully employed here.

Dataset

Prior studies undertaken by Zhixiang Lin, employed this method to
analyze HCV data from a publicly available HCV database, and
Hepatitis B virus sequences from an HBVrt database at Stanford
University. These studies have proved helpful in identifying positions
of mutations that confer general drug resistance. However, those
studies did not look at mutations corresponding to particular drugs.

This study was conducted with sequence data on 73-treatment
naive and 215 treatment failures, of various drugs, from patient data
collected by collaborators at the University of Tor Vergata. The
sequence data were provided as fasta files for treatment naive sets and
treatment failures. They were then compiled and summarized in Excel
sheets before processing in the R statistical package.

Method

The Metropolis-Hastings algorithm was applied to sequence data to
determine the mutation locations that correlate with drug resistance.
This algorithm employs Bayesian statistics and Markov modeling to
test each sequence position for four hypotheses:

H1: the corresponding treated and untreated positions are
independent from each other, and have the same probability
distribution

H2: the corresponding treated and untreated positions are
independent from each other, but have different probability
distributions

H3: the corresponding treated and untreated positions are
dependent on each other, and have the same probability distribution

H4: the corresponding treated and untreated positions are
dependent on each other, but have different probability distributions

The positions corresponding to hypothesis 4 with a 95% threshold
cut-off were later collected.

The patients were segregated into groups based on the viral
genotype (A or D) and the combinations of drugs used for treatment,
namely ADF, ETV, LMV, Peg-IEN, TBV, and TDF [8].

ADF: adefovir dipivoxil (Hepsera)
ETV: entecavir (Baraclude)

LMYV: lamivudine (Epivir)
Peg-IFN: pegylated interferon
TBV: telbivudine (Tyzeka)

TDF: tenofivir (Viread)

Of all the combinations used on patients, only those samples with
more than 20 elements were included in this analysis. These groups
were:

ADF treatment failures of genotype D

ADF&LMYV treatment failures of genotype D
ETV treatment failures of genotype D
LMYV treatment failures of genotype D
LMYV treatment failures of genotype A

Most of the data came from patients with the HBV D genotype,
which is the prevailing genotype of Western regions [9].

Results

The DNA sequences were then transcribed and translated, with the
resulting peptide sequences split into sections from 80-250 and from
250-344. Using a program developed in R, these sections were
analyzed for hypotheses 1-4 against the corresponding lengths of the
treatment naive data.

Ten Markov chains were simulated with 20,000 iterations. The
burn-in was set to 5,000 and the program chose the Markov chain with
the highest probability to create the following charts.

Probability

Position

Figure 2: ADF-D 80-250 Posterior Probabilities.

Figure 2 shows the optimal Markov chain posterior probabilities for
positions 80-250 of ADF-treatment failures of the D genotype.
Positions making the 95% threshold cut-off for H4 were 34, 71, 76, and
117.
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Figure 3: ADF/LMV-D 80-250 Posterior Probabilities

Figure 3 shows the optimal Markov chain posterior probabilities for
positions 80-250 of ADF/LMV-treatment failures of the D genotype.
Positions making the 95% threshold cut-off for H4 were 23, 37, 68, and
76.
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Figure 6 shows the optimal Markov chain posterior probabilities for
positions 80-250 of LMV-treatment failures of the D genotype.
. _ Positions making the 95% threshold cut-off for H4 were 101 and 125.
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Figure 4: ETV-D 80-250 Posterior Probabilities.

Figure 4 shows the optimal Markov chain posterior probabilities for
positions 80-250 of ETV-treatment failures of the D genotype.
Positions making the 95% threshold cut-off for H4 were 1, 3, 21, 134,
and 168.
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Figure 5: LMV-A 80-250 Posterior Probabilities

Figure 5 shows the optimal Markov chain posterior probabilities for
positions 80-250 of LMV-treatment failures of the A genotype.
Positions making the 95% threshold cut-off for H4 were 43, 45, 50, and
84.
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Figure 6: LMV-D 80-250 Posterior Probabilities.
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Figure 7: ADF-D 250-344 Posterior Probabilities.

Figure 7 shows the optimal Markov chain posterior probabilities for
positions 250-344 of ADF-treatment failures of the D genotype.
Positions making the 95% threshold cut-off for H4 were 49 and 62.
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Figure 8: ADF/LMV-D 250-344 Posterior Probabilities.

Figure 8 shows the optimal Markov chain posterior probabilities for
positions 250-344 of ADF/LMV-treatment failures of the D genotype.
The only position making the 95% threshold cut-off for H4 was 40.
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Figure 9: ETV-D 250-344 Posterior Probabilities
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Figure 9 shows the optimal Markov chain posterior probabilities for
positions 250-344 of ETV-treatment failures of the D genotype.
Positions making the 95% threshold cut-off for H4 were 16, and 38.
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Figure 10: LMV-A 250-344 Posterior Probabilities.

Figure 10 shows the optimal Markov chain posterior probabilities
for positions 250-344 of LMV-treatment failures of the A genotype.
Positions making the 95% threshold cut-off for H4 were 7, 8, 22, and
68.
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Figure 11: LMV-D 250-344 Posterior Probabilities

Figure 11 shows the optimal Markov chain posterior probabilities
for positions 250-344 of LMV-treatment failures of the D genotype.
Positions making the 95% threshold cut-off for H4 were 10, 34, 36, 39,
54, 59, and 70.

The following Table 1 summarizes the results corresponding to the
95% threshold cut-off for positions 80-250.

The following Table 2 summarizes the results corresponding to the
95% threshold cut-off for positions 250-344.

Group Positions

ADF-D 49, 62

ADF/LMV-D 40

ETV-D 16, 38

LMV-A 7,8,22,68

LMV-D 10,34, 36, 39,54,59,70

Group Positions
ADF-D 34,71,76, 117
ADF/LMV-D 23,37,68,76
ETV-D 1,3,21,134, 168
LMV-A 43, 45, 50, 84
LMV-D 101, 125

Table 1: H4 Positions for Sequence Segments 80-250

Table 2: H4 Positions for Sequence Segments 250-344

Discussion

As proteins serve as the workhorse for cells, single amino acid
changes can be devastating. Differences in hydrophobicity and binding
properties can lead to dysfunctional aggregation-prone structures.
However, in viruses, such changes may confer drug resistance and
therefore be selected for. The rtM204V/I mutations are well-
established markers for LAM resistance, while rtN236T and rtA181V
are thought to be responsible for ADV resistance [6].

Previous research using Bayesian modeling looked at all mutations
without segregating them by drug treatments. This study segregated a
sample into treatment failures with different drug combinations in
order to find specific mutation points that correlate with resistance for
each drug.

For Figures 2-11 and the Tables, amino acid changes were studied
instead of individual nucleotide changes. Working with peptide
sequences, instead of genomic sequences, was advantageous for three
main reasons. Firstly, it allowed each graph to convey more
information. Secondly, it circumvented the issue of analyzing the un-
translated region of the HBV genome, and thirdly, it ensured that it
filtered out less important synonymous mutations. But while this put
the focus on non-synonymous and non-silent mutations, it is possible
that this process may have overlooked seemingly unimportant silent
and synonymous mutations that may influence the development of
drug resistance.

Another limitation of this study is that some amino acid positions
were not identifiable and were denoted with an X. Sequences with
missing values were still included in the overall analysis. However, it is
hoped that additional experiments with a newly acquired 454
pyrosequencer will analyze full-length HBV sequences. Future
research would also employ this Bayesian selection tool on a larger
pool of HBV data.

It is hoped that this information can be used in targeting the
identified locations to improve patient treatment and drug design.
With increased availability of genomic data, the Bayesian method used
here may even be employed with other viruses or diseases to identify
other regions of interest.

References

1. Sharma SK, Saini N, Chwla Y (2005) Hepatitis B virus: inactive carriers.
Virol J 2: 82.

2. Guidotti LG, Chisari FV (2006) Immunobiology and pathogenesis of
viral hepatitis. Annu Rev Pathol 1: 23-61.

] Hematol Thrombo Dis
ISSN:2329-8790 JHTD, an open access journal

Volume 2 « Issue 6 « 1000166


http://www.ncbi.nlm.nih.gov/pubmed/16191199
http://www.ncbi.nlm.nih.gov/pubmed/16191199
http://www.ncbi.nlm.nih.gov/pubmed/18039107
http://www.ncbi.nlm.nih.gov/pubmed/18039107

Citation:

Higgs G, Lin Z, Cento V, Svicher V, Hattangadi S et al. (2014) Using Bayesian Models to Locate Mutations for HBV Drug Resistance. J
Hematol Thrombo Dis 2: 166. d0i:10.4172/2329-8790.1000166

Page 5 of 5

Robbins SL, Kumar V, Cotran RS (2010) Robbins and Cotran pathologic
basis of disease. In., 8th edn. Philadelphia, PA: Saunders/Elsevier, 1
online resource, 14-1450.

Shaw T, Bartholomeusz A, Locarnini S (2006) HBV drug resistance:
mechanisms, detection and interpretation. ] Hepatol 44: 593-606.

Seeger C, Mason WS (2000) Hepatitis B virus biology. Microbiol Mol
Biol Rev 64: 51-68.

Pastor R, Habersetzer F, Fafi-Kremer S, Doffoel M, Baumert TF, et al.
(2009) Hepatitis B virus mutations potentially conferring adefovir/
tenofovir resistance in treatment-naive patients. World ] Gastroenterol
15:753-755.

Zhang J, Hou T, Wang W, Liu JS (2010) Detecting and understanding
combinatorial mutation patterns responsible for HIV drug resistance.
Proc Natl Acad Sci U S A 107: 1321-1326.

Dienstag JL (2008) Hepatitis B virus infection. N Engl ] Med 359:
1486-1500.

Svicher V, Cento V, Bernassola M, Neumann-Fraune M, Van Hemert F,
et al. (2012) Novel HBsAg markers tightly correlate with occult HBV
infection and strongly affect HBsAg detection. Antiviral Res 93: 86-93.

] Hematol Thrombo Dis
ISSN:2329-8790 JHTD, an open access journal

Volume 2 « Issue 6 « 1000166


http://www.ncbi.nlm.nih.gov/pubmed/16455151
http://www.ncbi.nlm.nih.gov/pubmed/16455151
http://www.ncbi.nlm.nih.gov/pubmed/10704474
http://www.ncbi.nlm.nih.gov/pubmed/10704474
http://www.ncbi.nlm.nih.gov/pubmed/19222103
http://www.ncbi.nlm.nih.gov/pubmed/19222103
http://www.ncbi.nlm.nih.gov/pubmed/19222103
http://www.ncbi.nlm.nih.gov/pubmed/19222103
http://www.ncbi.nlm.nih.gov/pubmed/20080674
http://www.ncbi.nlm.nih.gov/pubmed/20080674
http://www.ncbi.nlm.nih.gov/pubmed/20080674
http://www.ncbi.nlm.nih.gov/pubmed/18832247
http://www.ncbi.nlm.nih.gov/pubmed/18832247
http://www.ncbi.nlm.nih.gov/pubmed/22086128
http://www.ncbi.nlm.nih.gov/pubmed/22086128
http://www.ncbi.nlm.nih.gov/pubmed/22086128

	Contents
	Using Bayesian Models to Locate Mutations for HBV Drug Resistance
	Abstract
	Keywords:
	Introduction
	Dataset
	Method
	Results
	Discussion
	References




