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ABSTRACT

Geophysical parameters of probable reserves are interpreted using seismic inversion. It is essential for estimating 
porosity, saturation, and shale content. This article discusses the use of model-based Geophysical parameters of 
potential reserves are interpreted using seismic inversion. It is essential for determining porosity, saturation, and 
shale content. This article explores the use of model-based seismic inversion and probabilistic neural networks to 
characterize reservoirs. To make this assignment easier, the paper is divided into two portions. From 3D seismic 
data gathered in the research area (Sapphire Deep Seismic-2010), model-based inversion is used to generate acoustic 
impedance values. Seismic data is used to analyse five well logs. The average correlation coefficient between synthetic 
and seismic data is 0.997, with a 7% error, indicating the utility of model-based inversion. Second, a Probabilistic 
Neural Network (PNN) is trained and verified using estimated effective porosity, water saturation, and shale 
volume. The 3D variations in effective porosity, water saturation, and shale volume are obtained using the validated 
probabilistic neural network.

Our research revealed an undrilled section in the Sapphir-80 channel with favourable petro physical parameters, 
indicating a large volume of gas and condensate.

Seismic inversion connects observed seismic data to interpreted elastic physical parameters of probable reserves. 
Post-stack seismic inversion is used to estimate reservoir parameters such as porosity, saturation, shale content, etc. 
An application of model-based seismic inversion and probabilistic neural network to post-stack seismic data for 
reservoir characterization is described. The paper is divided into two pieces for this assignment. Initial post-stack 
seismic inversion approximating the Acoustic Impedance (AI) values using 3D seismic data recorded in the research 
area (Sapphire Deep Seismic-2010) in the time domain. Seismic data from five wells was gathered. As shown by 
0.997 average correlation coefficient and 7% error between synthetic and seismic data, model-based inversion is 
effective. Second, a Probabilistic Neural Network (PNN) is trained and validated using data from the well sites. On 
the seismic volume, the probabilistic neural network calculates effective porosity, water saturation, and shale volume 
fluctuation in 3D.

The current analysis projected an undrilled area in the Sapphir-80 channel with good petro physical parameters, 
indicating a large volume of gas and condensate. 
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INTRODUCTION

Seismic inversion recovers earth properties from seismic data. A 
wavelet, an initial earth model, and TWT horizons are required for 
seismic inversion [1]. Seismic inversion for hydrocarbon detection 
has grown steadily over the last two decades. Seismic inversion and 
log data help extract subsurface petro-physical properties (porosity, 
shale volume, acoustic, elastic, and density) [2]. Post-Stack seismic 

inversion is used to extract acoustic impedance and establish a 
relationship between impedance and petro-physical properties. 
Geophysical applications of neural networks date back to the early 
1990s. McCormack, et al. [3], used back propagation Multi-Layer 
Feed Forward Networks to predict lithology log for an entire well 
(MLFN). Recently, Probabilistic Neural Networks (PNN) has proven 
to be a reliable predictor of reservoir parameters such as porosity 
[4,5]. PNNs have also been used to detect hydrocarbon migration 
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patterns and traps [6,7]. The PNN algorithm has the ability to build 
nonlinear relationships between petro-physical logs and seismic 
data. Thus, it can be used to accurately predict reservoir properties 
in 3D volumes. In the Sapphire gas field, Offshore Nile Delta, 
we used PNN to predict reservoir petro-physical properties from 
seismic data. The impedance volume becomes reservoir parameters 
(effective porosity, water saturation and shale volume volumes).

Geological setting

The Nile Delta is located on the northern edge of the African Plate 
and is structurally important in the development of the eastern 
Mediterranean and Levant basins. The region in Lower Egypt where 
the Nile River extends out and empties into the Mediterranean Sea 
is known as the Nile Delta. It spans 240 km of the Mediterranean 
coastline, from Alexandria in the west to Port Said in the east, 

and is one of the largest river deltas in the world. It is also a rich 
agricultural zone. The delta is roughly 160 km long from north 
to south. From Cairo, the Delta extends slightly downstream. 
According to Abdel Aal, et al. [8], this basin's current structure 
is defined by six major structural trends that shaped its Neogene 
successions. The NW Temsah structural trend, the NE Rosetta 
fault trend, the Pelusim shear zone, the minor NS Baltim fault 
trend, and the NW Red Sea–Gulf of Suez fault trend. These fold 
axes were created by Rosetta and Temsah transgressive movements 
during the Early–Middle Miocene [9]. The Sapphire gas field is 
located in the 152 km2 West Delta Deep Marine concession (Figure 
1). The sapphire field is linked to the NDO Anticline, which runs 
parallel to the NE Rosetta fault trend (Figure 2). The reservoir 
target in Sapphire field is deep marine basin floor fans and slope 
channel sands in the Kafr El Sheikh formation (Figure 3).

Figure 1: Location map of the Sapphire gas field, showing selected wells and 3D seismic.

Figure 2: Nile Delta stratigraphic column and hydrocarbon system. Modified from Rio et al. (1991) showing the study interval. Note: ( ) Sandston ( ) 
Shale-clay ( ) Evaporites ( ) Hiatus/Erosion ( ) Sourcerock ( ) Oil and Gas ( ) Gas.
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MATERIALS AND METHODS

In applications involving classification and pattern recognition, 
Probabilistic Neural Networks (PNNs) offer a scalable substitute 
for traditional back-propagation neural networks. They do not 
require the intensive forward and reverse computations that 
conventional neural networks require. They can also use other 
forms of training data. When used to solve a classification problem, 
these networks use the idea of probability theory to reduce the 
number of incorrect classifications. PNN is frequently employed 
in classification techniques. The first layer calculates the separation 
between the input vector and the training input vectors when an 
input is present. The result is a vector whose components represent 
how similar the input is to the training input. The second layer 
generates its net output as a vector of probabilities by adding the 
contributions from each type of inputs. Finally, compete transfer 
function on the output of the second layer selects the highest of 
these probabilities, resulting in a 1 (positive identification) for 
that class and a 0 (negative identification) for classes that are not 
targeted.

Reconstructing earth properties is done by a process called seismic 
inversion, which is typically employed in the oil and gas industries. 
It combines seismic and well data to anticipate rock attributes 
(lithology, fluid content, and porosity) throughout a survey. These 
characteristics of the rock can be used to pinpoint the reservoir and 
hydrocarbon. The two types of seismic inversion procedures are 
post-stacking and pre-stacking inversion. The most commonly used 
method for inversion is the first technique, known as post-stacking 
inversion. Using seismic data, well data, and a fundamental 
understanding of stratigraphy for interpretation, this method 
converts a single seismic information volume into an acoustic 
impedance volume. By eliminating the wavelet from seismic 
data, we contribute to the production of a high-resolution image 
of the subsurface. In general, "post stack inversion procedures" 
refers to a range of processes for converting stacked seismic data 
into quantifiable rock physics parameters. Acoustic impedance is 
often the product of post stack inversion, but pre-stack inversion 
may produce both acoustic and shear impedance. Sparse spike 
inversion, model-based inversion, recursive inversion, and colored 

inversion are examples of post-stack inversion techniques. Due to 
the absence of probabilistic metrics, these techniques are always 
categorized as deterministic techniques.

RESULTS AND DISCUSSION

The data used in the study are 3D seismic cube (Sapphire Deep 
Seismic-2010) and well logs from six wells (Sapphire South 
Central-1, Sapphire-Dq, Sapphire-Deep-1, Sapphire-De, Sapphire-
Dd and Sapphire-3). It includes P-wave, density, SW, Vcl, and 
effective porosity. Specifically, we used post-stack inversion and 
neural network analysis. The first step was to convert 3D seismic 
data to acoustic impedance. This study uses a deterministic 
wavelet (Figure 4) generated by convolving P-wave and density 
log reflectivity series with well log wavelet data. The log-to-seismic 
correlation (Figure 5) and horizons (top Sapphire-40, 60, 70, 80) 
were then selected (Table 1). A model was constructed by inversion 
(Figures 6-8). In this first model, we add the missing low and high 
frequencies Modified initial models to improve fit between actual 
seismic traces and synthetic traces and reduce errors. There is a 
97% average correlation between synthetic and seismic data in 
this inversion. Synthetic and seismic data are highly correlated 
at the Sapphire south-central well location (Table 2), and actual 
and inverted P-impedance logs are highly correlated (Figure 9). 
This confirms model-based inversion. Inversion of the post-stack 
yields Zp volume (Figure 10). A geo-statistical model can predict 
many petro-physical parameters from well and seismic data. Using 
probabilistic neural networks, effective porosity and shale content 
are calculated. The logs were effective porosity, water saturation, 
and shale content. Input data include a 3D seismic cube, inverted 
results (Zp volume), envelop, RMS, and sweetness volumes. To use 
a neural network to estimate porosity in a 3D volume, first train it 
on seismic and measured log data (Figures 10-12). The relationship 
is then applied to the entire volume. To find the number of 
operators and attributes, we use the multi-attribute (Figures 13-15). 
If we accept the multi-attribute method analysis, we can use PNN 
to predict SW, and Vsh at the well locations (Figures 16-18) and 
test the process using cross plots (Figures 19-21) between actual SW, 
and predicted SW, and Saturation, effective porosity, and shale 
content volumes were generated using PNN (Figures 22-25).

Figure 3: Depth Structure contour map, Sapphire-80 Formation in Sapphire field, showing ENE-WSW trending NDOA anticline that is dissected by three 
fault trends (ENE-WSW, NE-SW, and N-S).
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Figure 4: Deterministic wavelet using five wells used in this study with time response on top and respective amplitude spectrum on the bottom. The phase is 
constant 180 degree. Note: ( ) Determenistic all wells, ( ) Phase (avg: 178)

Figure 5: An example of the well ties in Sapphire De well using deterministic wavelet. The logs (from left. to right) are, P-impedance (IP), and reflectivity.  The 
blue seismic trace is the calculated synthetic, and the red is the real seismic data respectively.

Table 1: The correlation coefficients of the five wells using both statistical wavelets and deterministic wavelets.

Well
Wavelet correlation coefficient

Statistical Deterministic

Sapphire South Central-1 0.703 0.859

Sapphire-Dq 0.7 0.816

Sapphire-Deep-1 0.892 0.905

Sapphire-De 0.821 0.871

Sapphire-3 0.768 0.856

Average 0.777 0.87

0, 654 0, 654 0, 654

J Geol Geophys, Vol. 11 Iss. 7 No: 10001042
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Figure 6: Initial Acoustic Impedance (AI) model of In-line 4644. showing the actual impedance for Sapphire Dq well compared to the initial model impedance.

Figure 7: Post-stack inversion analysis for well Sapphire South Central using deterministic wavelet. Showing the inversion analysis was done for the reservoir 
interval in Sapphire 40 to Sapphire 80.

Figure 8: Cross plot illustrates P-impedance of Inversion results versus the P-impedance of actual log data. P. Showing the linear relation between Inversion 
results and actual log data.

Table 2: Error values between the inverted and the original well logs and the correlation coefficients between the original and synthetic seismic data.

Well Correlation coefficient Synthetic error
Sapphire South Central-1 0.9996 0.0282

Sapphire-Dq 0.9983 0.0659
Sapphire-Deep-1 0.9982 0.0618

Sapphire-De 0.9953 0.0991
Sapphire-3 0.9954 0.0982

J Geol Geophys, Vol. 11 Iss. 7 No: 10001042
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Figure 9: Inline Seismic section for post-stack inversion results showing p-impedance (Zp) with p-impedance log curves at Sapphire Deep-1 well.

Figure 10: Analysis of target log(red) shale content, seismic trace(black) Sapphire Dd, external attribute volumes trace (blue) and analysis window (horizontal 
yellow lines).

Figure 11: Analysis of target log(red) porosity, seismic trace(black) Sapphire Deep-1, external attribute volumes trace (blue) and analysis window (horizontal 
yellow lines).

J Geol Geophys, Vol. 11 Iss. 7 No: 10001042



7

Abosalama A OPEN ACCESS Freely available online

Figure 12: Analysis of target log(red) water saturation, seismic trace(black) Sapphire-3, external attribute volumes trace (blue) and analysis window (horizontal 
yellow lines).

Figure 13: Validation error plot for different operator lengths. The minimum validation error occurs when a three-point operator (red curve) is used with two 
attributes. Note: ( ) 1 point, ( ) 3 point, ( ) 5 point, ( ) 7 point, ( ) 9 point, ( ) 11 point.

Figure 14: Validation error plot for different operator lengths. The minimum validation error occurs when a three-point operator (red curve) is used with two 
attributes. Note: ( ) 1 point, ( ) 3 point, ( ) 5 point, ( ) 7 point, ( ) 9 point, ( ) 11 point.

J Geol Geophys, Vol. 11 Iss. 7 No: 10001042
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Figure 15: Validation error plot for different operator lengths. The minimum validation error occurs when a three-point operator (red curve) is used with six 
attributes. Note: ( ) 1 point, ( ) 3 point, ( ) 5 point, ( ) 7 point, ( ) 9 point, ( ) 11 point.

Figure 16: The application of the PNN for Vsh prediction. Measured logs are shown in black and the predicted ones are shown in red.

Figure 17: The application of the PNN for effective porosity prediction. Measured logs are shown in black and the predicted ones are shown in red.

J Geol Geophys, Vol. 11 Iss. 7 No: 10001042
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Figure 18: The application of the PNN for water saturation prediction. Measured logs are shown in black and the predicted ones are shown in red.

Figure 19: Relationship between the actual and predicted shale content. Note: Colour key well, ( ) Sapphire, ( ) Sapphire, ( ) Sapphire, ( ) Sapphire.

Figure 20: Relationship between the actual and predicted effective porosity. Note: Colour key well, ( ) Sapphire, ( ) Sapphire, ( ) Sapphire,  ( ) 
Sapphire, ( ) Sapphire.

J Geol Geophys, Vol. 11 Iss. 7 No: 10001042
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Figure 21: Relationship between the actual and predicted waater saturation. Note: Colour key well, ( ) Sapphire, ( ) Sapphire, ( ) Sapphire.

Figure 23: Relative P-Impedance slice (RMS Amplitude) on Sapphire-80. There is undrilled low shale content part (sand reservoir) that takes Sheet.

Figure 22: Relative P-Impedance slice (RMS Amplitude) on Sapphire-80. There is undrilled low amplitude part (sand reservoir) that takes Sheet shape.

J Geol Geophys, Vol. 11 Iss. 7 No: 10001042
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CONCLUSION

According to the findings of this study, the Sapphir-80 channel is 
oriented ENE-WSW along the NDO Anticline trend. Its width 
ranges from 1.2 km to 2 km, and its length is approximately 12 
km. In the current study, we estimated an undrilled area with a 
good thickness and good petro physical parameters, implying that 
this area contains a significant volume of gas and condensate 
by using post-stack inversion followed by a probabilistic neural 
network approach. A geo-statistical model can predict many petro-
physical parameters from well and seismic data. This study uses a 
deterministic wavelet generated by convolving P-wave and density 
log reflectivity series with well log wavelet data. Using probabilistic 
neural networks, effective porosity and shale content are calculated.
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