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Abstract
Cytochrome P450 monooxygenases (P450s) are known to play a central role in the adaptive response of insects 

and other animals to chemicals in the environment. Drosophila spp. P450s are known to be regulated by Cap ‘n’ collar 
isoform C (CnCC) and/ Spineless (ss) which are orthologs to Nuclear factor erythroid-2 factor 2 (Nrf2)/Aryl hydrocarbon 
receptor (AhR) in higher mammals. However, the mechanism underpinning this regulation in insects including fruit fly, 
Drosophila melanogaster is poorly understood. Understanding the constitutive and inducible patterns of expression 
requires knowledge about the signalling pathways that control insect P450 expression, which is still lacking for most 
identified insect P450s. D. melanogaster, because of its longstanding use as a genetic model insect, is a powerful tool 
for identifying possible regulatory mechanisms and for following expression through to function. Here, we describe the 
roles played by the cis-acting elements and the Transcription Factors (TFIF) mechanisms involved in the regulation of 
cytochrome P450 genes in D. melanogaster in response to xenobiotic compounds. These cis-acting elements include; 
promoters, enhancers, repressors, silencers and insulators. The regulatory mechanisms involved in the regulation of the 
P450s by the spineless (ss)/tango (Tgo) and CnCC/dKeap1 (Drosophila Kelch-like ECH-associated protein 1) signalling 
pathways in insecticide resistance were also extensively discussed. This review increases our understanding of the 
regulatory mechanisms involved in the insecticide metabolism in Drosophila melanogaster.

Keywords: CnCC; dKeap 1; Drosophila melanogaster; p450s;
Spineless; Tango

Introduction
The  cytochrome P450  superfamily consists of a considerable 

amount of heme-containing monooxygenases and is established in 
all living organisms including insects [1,2]. In the fruit fly, Drosophila 
melanogaster alone there are 83 P450 genes with a few of these enzymes 
playing key roles in the metabolism or activation of xenobiotics [3-
6]. These P450s include; Cyp6a2 (substrate-DDT, aldrin, dieldrin 
and diazinon) [7-9] Cyp6g1 (substrate-DDT, imidacloprid) [10,11]. 
Cyp12a4 (substrate-Lufeneron) and Cyp12d1 (substrate-DDT and 
carbaryl) [12-14]. In addition, P450s also partake in the biosynthesis 
of cuticular hydrocarbons, ecdysteroids, juvenile hormone, and 
pheromones [15,16]. In higher mammals, some of these xenobiotic 
metabolizing cytochrome P450 genes are established to be upregulated 
by the transcription factors such as the Aryl hydrocarbon receptor 
(AhR)/Aryl hydrocarbon receptor nuclear translocator (ARNT) 
and/or Nuclear factor erythroid-2 related factor-2 (Nrf2)/Kelch-
like ECH-associated protein 1 (Keap 1) [17-21]. Interestingly, AhR/
ARNT and Nrf2/Keap 1 display a multilevel crosstalk where the latter 
is also a target of the former [22-24]. Previous studies also revealed 
the orthologs to Aryl hydrocarbon receptor/(AhR) Aryl hydrocarbon 
nuclear receptor (ARNT) and Nuclear factor erythroid factor 2 (Nrf2)/
Kelch-like associated protein 1(Keap 1) in Drosophila melanogaster to 
be Spineless (Ss)/Tango (Tgo) and Cap ’n’ collar isoform C (CnCC)/
Drosophila Kelch-like ECH-associated protein 1 (dKeap 1) respectively 
[25-28]. Therefore, to understand the mechanism by which these P450s 
are regulated in Drosophila melanogaster (an insect model) the basics 
underpinning this regulation are described below:

Regulation of Gene Expression
The fundamental component of the control of gene expression 

is attained at the transcriptional level [29]. This level of regulation 

consolidates the contribution of various types of cis-acting genomic 
elements, which are vital molecular switches involved in the 
transcriptional regulation of a productive chain of gene activities 
regulating numerous biological processes, including abiotic stress 
responses, developmental processes and hormone responses 
[30,31]. This transcriptional regulation transpires within a complex 
genomic milieu in which promoters, enhancers, and insulators 
are intimately connected both along the one-dimensional linear 
chromosome and within the three-dimensional nuclear chromatin 
environment [32-34]. 

Promoter

Regulation of gene expression at the promoter level is chiefly 
regulated by the  cis-acting elements restricted upstream of the 
transcriptional start site [35]. The physical interplay between regulatory 
proteins and the basic transcriptional machinery is straight forward 
during initiation of transcription owing to the location of proximal 
elements to the core promoter [34]. 
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Enhancers

In variance with promoters, enhancers are typically located far 
away from the genes they regulate [31,32]. Albeit a promoter is 
utterly vital for gene transcription, a significant part of metazoan 
transcriptional regulation emanates via the action of distal cis-
regulatory modules [33,36]. 

Repressors

Repressors appear to function by blocking the binding of a nearby 
activator, or by directly competing for the same site [36,37]. It has been 
proposed that the difference between the two may be associated to the 
recruitment of distinctive cofactors [36].

Silencers

Silencers are binding sites for negative transcription factors termed 
repressors [36]. Silencers are sequence-specific elements that confer 
a negative (i.e., silencing or repressing) effect on the transcription of 
a target gene [38]. Repressor function can require the recruitment of 
negative cofactors, also termed co-repressors, and in some cases, an 
activator can switch to a repressor by differential cofactor recruitment 
[36]. In Drosophila, two classes of silencers have been observed: short-
range silencers, which generally must reside within ∼100 bp of their 
target gene to have a repressive effect and long-range silencers, which 
can repress multiple enhancers or promoters over a span of a few kilo 
base pairs [36]. 

Insulators

A third critical component contributing to gene expression is the 
insulator. Originally defined in Drosophila, and still best understood 
in that organism, insulators were so named due to their ability to 
“insulate” genes from position effects in transgenic assays. Historically, 
two major roles have been ascribed to insulator elements: the ability to 
serve as boundary elements preventing the spread of heterochromatin, 
and the ability to prevent enhancer activity when interposed between 
an enhancer and promoter [33].

Regulatory mechanismS  in resistance

Drosophila melanogaster has been used broadly as a model system 
to understand the molecular mechanisms underlying insecticide 
resistance [25]. Further studies also addressed the mechanisms that 
underlie this regulation, mapping critical promoter elements that are 
required for P450 gene induction in response to pesticides or the well-
studied xenobiotic phenobarbital (PB) [39-45]. The Spineless/Tango 
and CnCC/dKeap1 signaling pathways are hereby described below.

The Spineless (Ss) gene

The Drosophila gene spineless (Ss) is the ortholog of vertebrate AhR 
[26,46]. These proteins share extensive sequence identity, especially 
in their  Basic Helix-Loop-Helix (bHLH) regions, and must share 
common ancestry, as several of the splice sites in the Ss and AhR genes 
are precisely conserved [47]. 

Function and structure of spineless: Like other invertebrate 
homologs of AhR, spineless does not bind prototypical xenobiotic 
ligands of the vertebrate receptor such as 2,3,7,8-Tetrachlorodibenzo-
p-Dioxin (TCDD) [48]. Studies revealed that spineless, functions as a 
heterodimer with Tango, the D. melanogaster ortholog of ARNT and 
both appear to recognise the same DNA sequence, the xenobiotic 
response element (XRE), a core nucleotide sequence at the upstream 
of inducible target genes for the transcription factor Aryl Hydrocarbon 

receptor (AhR) that is responsible for recognition of exogenous 
environmental pollutants in eukaryotic cells [49,50]. Furthermore, 
Tango heterodimerize with Trachealess and Single minded (both 
bHLH-PAS family members) and regulates transcription in the trachea 
and central midline, respectively [51].

Ligands of spineless (AhR): Spineless (Ss) in D. melanogaster does 
not show the ability to bind to toxic agonists such as dioxin congener 
(TCDD) and Polycyclic Aromatic Hydrocarbons (PAHs) [52]. It is 
therefore plausible that, as a consequence of their toxic activity, an 
endogenous ligand competent of triggering the Ss protein is generated. 
Such a role is often played by one of the endogenous AhR ligands–a 
toxic tryptophan derivative Formyl-Indolo-Carbazole (FICZ). 
Consequently, cellular concentrations of FICZ levels are elevated 
considerably in response to ionizing radiation and this inevitably 
triggers elevated expression of the Ahr gene thereby leading to cellular 
reaction to toxin exposure, and, in particular, to ionizing radiation. 
This induces expression of detoxification-related genes  Cyp6g1  and 
Cg1681, hence ss gene is necessary for this induction [47]. This protein 
can however bind to the XRE and stimulate transcription from genes 
containing this cis-acting element [49,53]. Moreover, it regulates 
normal morphogenesis of the leg or antenna and bristles, all of which 
are dominant Drosophila sensor organs or tissues that operate in 
response to environmental chemicals [54].

Molecular Mechanisms of AhR Functions in the 
Regulation of Cytochrome P450S in Drosophila 
Spineless (Ss) Tango (Tgo) signalling pathway

The spineless (Ss) protein remains predominantly cytoplasmic as 
part of a protein complex with the molecular chaperone heat shock 
protein 90 (HSP90), p23, and XAP2. It is known to interact with 
Tango (Tgo), the fly homolog of mammalian ARNT and through this 
interaction the protein is transported to the nucleus from the cytoplasm 
where it binds another bHLH-PAS-protein, the Aryl hydrocarbon 
receptor nuclear translocator (ARNT). The Ss: Tgo heterodimer binds 
to a specific motif, XRE in the promoters of its target genes and regulates 
their transcription [47,55]. The Ss: Tgo heterodimer can both repress 
and activate explicit genes, demonstrating the heterodimer’s interplay 
with other transcription or nucleosome assembly factors [47]. AhR 
gene is exceedingly conserved between vertebrates and invertebrates 
(Figure 1) [47].

The Cap ‘n’ Collar Isoform C (CnCC) (named after the CnC 
gene of Drosophila)

Studies of the Drosophila orthologs to Nrf2 and dKeap1 have 
provided insights into the functions of this protein. The Drosophila 
Cap ‘n’ collar locus encodes CnCC, which contains a bZIP domain 
homologous to that of Nrf2, N-terminal DTG (Asp-Thr-Gly), a low-
affinity motif and a high-affinity ETGE (Glu-Thr-Gly-Glu) motif, 
separated by a central lysine-rich α-helix and are homologous to those 
that mediate Nrf2 interaction with Keap1 (a member of the Kelch 
family of actin binding proteins, named after the fruit fly’s Kelch 
protein (a component of the egg chambers) [56].

Function of the CnCC: CnCC regulates the transcriptional 
responses to xenobiotic compounds whilst the CnCC-Keap1 (dKeap 
1) protein complexes regulate the native cellular and developmental 
processes [18,57]. 

Ligands of CnCC: DKeap1 can function as a sensor of oxidants 
and electrophiles, which react with its redox sensitive cysteine residues 
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Figure 1: Schematic representation of Ss/tgo signalling pathway. The cytosolic ss are complexed of two molecules of heat shock protein (Hsp90), X associated 
protein (XAP2) and the co-chaperone p23 for the HSP90. Binding of a ligand, e.g. TCDD, leads to a conformational change, thereby allowing nuclear translocation of 
the spineless complex. In the nucleus, Spineless dissociates from the complex and dimerizes with Tango. The Ss–Tgo heterodimer then binds to xenobiotic response 
elements (XREs) in the promoters of genes encoding for several phase I and phase II metabolizing enzymes but also several other genes, e.g. Cyp6g1 (Adopted 
and modified from Denison and Nagy) [64]. Schematic presentation of the sequence conservation between AhR and Ss, LBD, dioxin binding domain. (Adapted and 
modified from Céspedes et al. [52].

[58,59]. During oxidative stress or electrophilic xenobiotics, dKeap 1 
undergoes destruction releasing CnCC that translocates to the nucleus 
[60,61]. CnCC is then stabilized and accumulates in the nucleus, where 
it binds to the Antioxidant Response Element (ARE) in the enhancers 
of its target genes [59,62].

Molecular Mechanisms of CNCC Functions in the 
Regulation of Cytochrome P450 genes
CnCC/dKeap1 signalling pathway

Antioxidant Response Element (ARE)-mediated response to 
oxidative stress is conserved from flies to humans. In unstressed 
conditions, Nrf2 (Nuclear factor erythroid-2 related factor- 2) in 
mammals, CncC (Cap ‘n’ collar isoform C) in Drosophila, is repressed 
by dKeap1 (Drosophila Kelch-like ECH-associated protein 1), which 
also functions as a sensor of oxidants and electrophilic compounds 
[59,63]. Under oxidative stress conditions, the inhibition of CncC by 
dkeap1 is abolished allowing this transcription factor to bind, with 
other proteins, to ARE sequences upregulating downstream genes such 
as P450s. The Drosophila dKeap1 contains Kelch repeats homologous 
to those that mediate Keap1 interaction with Nrf2 as well as a sequence 
motif that is required for mammalian Keap1 export from the nucleus 
[18]. Overexpression of CncC and depletion of dKeap1 in Drosophila 
melanogaster activates the transcription of many genes including 
Cyp6g1 and Cyp6a2 that protect cells from xenobiotic compounds, 
whereas dKeap1 overexpression represses their transcription, 
indicating that the functions of these protein families in the xenobiotic 

response are conserved between mammals and Drosophila (Figure 2A-
2C) [18,25].

Previous studies revealed that cytochrome P450 family members 
are modulated by Spineless/Tango and CnCC/ dKeap 1 pathways in 
Drosophila melanogaster (Table 1).

Further studies have also shown that cytochrome P450 family 
genes contain elements responsive to the Spineless/Tango and CnCC 
transcription factors in Drosophila melanogaster (Table 2) [64-66].

Conclusions
Here we have reviewed the role of the spineless/tango and CnCC/

dKeap 1 signalling pathways for their mechanistic role in the regulation 
of Cytochrome P450s in the activation of xenobiotics in Drosophila 
melanogaster. Since D. melanogaster is a model insect system and the 

S/No. Cytochrome P450 Signalling pathway Reference
1. CYP6G1 ss/tango  and  CnCC/dKeap 1 [14,47]
2. CYP6B1 ss/tango [66]
3. CYP6G2 CnCC/dKeap 1 [14]
4. CYP12D1 CnCC/dKeap 1 [14]
5. CYP6A2 CnCC/Keap 1 [25]
6. CYP6A8 CnCC/Keap 1 [25]
7. CYPA21 CnCC/Keap 1 [25]
8. CYP6BQ9 CnCC/Keap 1 [25]
9. CYP12A4 CnCC/Keap 1 [25]

Table 1: Cytochrome P450s modulated by Spineless/Tango and CnCC/dKeap1 
pathways.
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Figure 2: (A) General scheme for the induction of CnCC/dKeap 1-signaling pathway. The antioxidant response element (ARE) in the promoter region of select genes 
allows the coordinated upregulation of antioxidant and detoxifying enzymes in response to oxidative/electrophilic stress. This upregulation is mediated through Cap 
‘n’ collar isoform C nuclear (CnCC) that may be activated by endogenous and exogenous molecules or stressful conditions. These agents disrupt the association 
between CnCC and dKeap1 with subsequent nuclear translocation of CnCC. In the cell nucleus CnCC interacts with small MAF protein, forming a heterodimer 
that binds to the ARE sequence in the promoter region and upregulates transcription of many genes encoding detoxifying enzymes such as Cyp6g1. It is therefore 
speculated that this signalling pathway is constitutively upregulated in long-lived individuals providing extension of longevity and health span. (Adopted and modified 
from [59,65]. (B) A detailed view at the promoter level of teh binding of CnCC to sMaf. (C) An illustration of the conservation of Nrf2 and Keap 1 in Drosophila (Adapted 
and Modified from [59,65].

S/No. P450 Family genes Responsive elements References
1 CYP6G1 XRE [47]

3. CYP6G2 ARE [25]

4. CYP12D1 ARE [14]

5. CYP6A2 ARE [25]

6. CYP6A8 ARE [25]

7. CYPA21 ARE [25]

8. CYP12A4 ARE [25]

XRE: Xenobiotic Response Element; ARE: Antioxidant Response Element
Table 2: Response Elements for Spineless/Tango and CnCC/dKeap 1 transcription 
factors.

mechanisms of insecticide resistance in this species have been studied 
widely, this work has implications for the mechanistic understanding 
of the basis of insecticide resistance in insect disease vectors and hence 
the spread of Vector Borne Diseases.
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