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Abstract
Tumor sphere quantification plays an important role in cancer research and drugs screening. Even though the 

number and size of tumor spheres can be found manually, this process is time-consuming, prone to making errors, 
and may not be viable when the number of images is very large. This manuscript presents a method for automated 
quantification of spheres with a novel segmentation technique. The segmentation method relies on initial watershed 
algorithm which detects the minima of the distance transform and finds a tumor sphere for each minimum. Due to 
the irregular edges of tumor spheres, the distance transform matrix has often more number of minima than the true 
number of spheres. This leads to the over segmentation problem. The proposed approach uses the smoothed form 
of the distance transform to effectively eliminate superfluous minima and then seeds the watershed algorithm with 
the remaining minima. The proposed method was validated over pancreatic tumor spheres images achieving high 
efficiency for tumor spheres quantification.
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Introduction
Cancer stem cells (CSCs) or tumor-initiating cells represent a subset 

of cancer cells with the potential to differentiate into the different sub 
clones existing in a tumor [1,2]. These cells also have metastatic capacity 
and are considered to represent an essential source for recurrent 
disease after cancer therapy [3,4]. CSC can form tridimensional 
spherical structures called tumor spheres (TS) when grown in non-
adherent conditions in media supplemented with the required growth 
factors. The gold standard assay to characterize stem cell functionality 
is the TS formation assay which is based on the quantification of tumor 
spheres generated by plated single cells. However, this is a low yield 
assay since the rate of TS formation in this isolated condition is very 
low, therefore most TS formation assays are developed plating multiple 
cells [5,6] in multiple plates which is a time-consuming process. 
Therefore, automatization of spheres counting after images acquisition 
has been encouraged especially for drug screening assays in which 
thousands of wells are analyzed simultaneously. Image segmentation 
has been applied to problems in pattern recognition, computer vision, 
and medical imaging [7,8]. Segmentation is the process of splitting 
gray or colored digital image into different regions where each region 
contains elements with similar characteristics. The location and size 
of these regions carry important information for many applications 
and it is fundamental for optimal image automated quantification. 
In the current manuscript, our main interest is to improve image 
segmentation for automated tumor spheres quantification.

The watershed construction is a well-known image segmentation 
algorithm [9,10]. This algorithm views a two-dimensional image as a 
three-dimensional image where the third dimension is the gray intensity 
level. If a pixel has the lowest intensity level within its neighborhood, 
then it is called a local minimum. There are often many local minima 
in a given image. A watershed algorithm starts filling water into the 
basins of these minima and whenever water from two basins is about to 
mix, the algorithm constructs a wall (shed) between these two basins, 
effectively preventing water from mixing. This process continues until 
the highest value in the image is reached and results into the walls 
between the basins. These walls become the borders of the segmented 
spheres. However, there are usually more than one minimum within a 

single tumor sphere and therefore, the watershed algorithm splits the 
sphere into many superfluous regions [10]. This manuscript proposes 
an algorithm that aims to resolve this over-segmentation problem. 
The major step of the algorithm is low-pass filtering of the distance-
transformed image. Filtering reduces the number of minima within 
each tumor to one minimum and using the watershed algorithm 
receives this filtered output and produces the correct sphere borders.

Materials and Methods
This section describes the proposed image segmentation method 

for automated identification of tumor spheres. In the first step, a color 
image is converted into image.
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I1 with gray intensities by the following weighted averaging of the 
red (R), green (G), and blue (B) channels: Where the coefficients are 
default values used in the MATLAB image processing toolbox. When 
border pixels have similar gray levels to the tumor spheres, incorrect 
identification of spheres may occur. Two lines of pixels from each edge 
of the image I1 are removing to avoid this problem.

A two-dimensional Gaussian filter is applied to I1 for obtaining 
its smoothed form. This operation reduces the sharp variations 
within the background and tumor sphere regions and provides a clear 
separation of these two regions. The Gaussian distribution is given by 
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where 𝜎 denotes the standard deviation of the distribution. A Gaussian 
kernel ℎ𝐺 is formed by sampling 𝐺 (𝑥, 𝑦) with a specific standard 
deviation σ1. Convolution of the original image 𝐼1 with this kernel 
yields the smoothed image 𝐼2:

( )2 1 1I I hG σ= ∗                (3)

Heterogeneous illumination during the image acquisition causes 
considerable amount of variation in the image background where the 
corners are darker than central parts. An image with homogeneous 
background is obtained by using a similar approach to the one 
described by Bowman’s et al. This approach involves a square window 
𝑊𝑖𝑗 centered at the pixel (𝑖, 𝑗):

( )  ,  :   / 2,{    / 2| | }ijW x y x i l y j l= − ≤ − ≤                (4)

where 𝑖 = 1, …, 𝑀 and 𝑗 = 1, …, 𝑁 as the image size is 𝑀𝑥𝑁. Notice that 
each side of this square is 𝑙 pixels. The mean intensity 𝜇𝑖𝑗 of the pixels 
within the window is found:
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The mean intensity represents the estimated background at the 
specified pixel, that is 𝐵 (𝑖, 𝑗) = 𝜇𝑖𝑗. The image 𝐼3 with the homogeneous 
background is determined by subtracting the background image B 
from the smoothed image 𝐼2: 

 3 2  I I B= −                   (6)

The window centered at an edge pixel includes an area that is 
outside of the image. The gray level of each pixel within this area is 
considered to have the same gray level with the nearest pixel on the 
edge. This method is effective replicating boundary pixels whenever 
extrapolation is needed. The Otsu’s method is then applied to the image 
𝐼3 for converting the gray image into a binary image. This method finds 
the optimal threshold 𝑟𝑜𝑡𝑠𝑢:

 ( )3  rotsu Fotsu I=                  (7)

where 𝐹𝑜𝑡𝑠𝑢 (⋅) is the Otsu’s method [Ots1979, Bou2014]. The 
threshold splits the background from the foreground in a way that 
the weighted sum of intra-group variances is the smallest. This is 
equivalent to having the largest inter-variance between the foreground 
and background. The threshold function 𝑇 (⋅) yields the binary image I4:

 ( )4 3  ,  I T I rotsu=                   (8)

The image 𝐼4 has white pixels representing the tumor spheres and 
black pixels representing the background. Small patches of black pixels 
within the tumor spheres are converted to white pixels by using the 
morphological operation of filling.

In the next step we perform the Euclidean distance transform to 𝐼4 
that assigns the smallest distance from each pixel of the tumor spheres 
in 𝐼4 to the nearest background pixel. More specifically distance 𝑑𝑖𝑗 
from a pixel 𝑝𝑖𝑗 of the tumor sphere to the nearest background pixel 𝑏 
is given as follows

 ( )min ,ij b B ijd d p b∈=                   (9)

where 𝑑 (𝑥, 𝑦) is the Euclidean distance between two points 𝑥 and 𝑦. 
The distance transformed image 𝐼5 is constructed by assigning this 
distance as the element on the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column: 𝐼5(𝑖, 𝑗) = 𝑑𝑖𝑗. 
An example with a simple 6 × 6 binary image is illustrated in Figure 
1. The original binary image and its transformed image are under the 
first column while their matrix representations are presented under 
the second column. The brightest pixel of the transformed image is 
the farthest pixel from the edges of the white region, representing the 

center of the tumor sphere in this case. A real case is demonstrated in 
Figure 2 where:

 (a) shows an original image with three tumor spheres while,

 (b) shows the distance-transformed image.

If the shape of a tumor sphere deviates from a circular shape largely 
or its border makes large wiggles, then there may exist two or more local 
maxima within the sphere border since the level of brightness depends 
on the nearest distance to the background. An example of this can be 
observed in Figure 2b where the middle tumor sphere is elongated 
almost vertically, and one maximum is located on the top part and the 
other maximum is located on the bottom part of the sphere. Since this 
sphere has two local maxima and since each maximum is associated 
with a tumor sphere, this sphere would be segmented into two separate 
superfluous spheres by the watershed algorithm.

To overcome this problem, we smoothen the distance-transformed 
image to eliminate high frequencies in spatial domain. The higher 
spatial frequencies are discarded from the distance-transformed image 
I5 after passing I5 through a low-pass filter. Since the Fourier transform 
of a Gaussian waveform is another Gaussian that decays smoothly 
without ripples in the frequency domain, convolution in spatial 
domain effectively eliminates the higher spatial frequencies. This is the 
low-pass filtering operation: We filter I5 with a Gaussian hG(σ2) in the 
spatial domain:

 ( )6 5 2  I I hG σ= ∗                 (10)

where * represents the convolution operation and hG(σ2) is a 
Gaussian kernel. The sigma parameter, σ2, of the Gaussian needs to 
be determined for eliminating high spatial frequencies. When σ2 is too 
small, the filter hG(σ2) only stops very high spatial frequencies and as 

Figure 1: First row shows the original image and the corresponding matrix while 
the second row shows the transformed image and the corresponding matrix.

Figure 2: (a) The original image and (b) the Euclidean distance-transformed 
form of the image.
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a result I5 is not smoothed enough and some superfluous spheres may 
remain. In other words, over-segmenting problem persists with a small 
σ2. On the other hand, when σ2 is too large, I5 is smoothed largely and 
as a result true spheres may be fused into a single sphere. In this case 
we have the problem of under segmenting. By experimental iteration 
we found that low pass filtering with the sigma values between 5 to 11 
provides optimal segmentation results and therefore we chose σ2 = 8 
which is in the center of this range of values. The resulting image 𝐼6 is 
the smoothed distance-transform matrix without superfluous maxima 
that existed in 𝐼5. Watershed construction algorithm finds the sphere 
boundaries based on the image 𝐼6.

This image is first negated to make maximum points to be 
minimum points. In other words, the centers of the spheres are the 
highest points which are turned into the lowest initial points for the 
watershed algorithm. Starting with these sphere centers, the watershed 
algorithm yields accurate results as is demonstrated in Figure 3. Three 
original images are under the left column and the corresponding 
segmented images are under the right column. Segmentation of the 
image in Figure 3a was relatively easy since: 

(i) Almost no spheres are overlapping, 

(ii) Background is relatively homogeneous, and 

(iii) Spheres are shaped circularly.

Figure 3b demonstrates that segmentation of two or three 
overlapping spheres was successful. The spheres with relatively non-
circular shapes are also identified correctly. Figure 3b shows the 
segmentation result for a more challenging image where spheres are 
largely overlapped. To evaluate the performance of the proposed 
algorithm, a tumor sphere assay was set up in 96 separate wells as 
usually done for drugs screening. Ten microscopy-based pictures of the 
initial 10 wells are presented in this report and the number of tumor 
spheres is counted manually and automatically with the proposed 
method. Spheres size was also recorded during the automated counting. 

The manual count specifies the average of two expert’s manual counts. 
The counting results are listed in Supplementary Table 1. The proposed 
method achieves a high level of accuracy as the automated counts and 
manual counts are either the same or they differ by 1 for first 9 images. 
The overall automated and manual counts are 102 and 99 where the 
difference is about 3%. Experimental duplication has achieved similar 
results. The algorithm also lists the size of each tumor sphere in any 
given image. As an example, we presented the sphere sizes for the 
image in Figure 3d in Supplementary Table 2.

Result and Discussion
Automated quantification of tumor spheres is of great interest 

to biologist as it can save their time and effort while achieving high 
quantification accuracies. Extended period of manual counting 
sessions is also prone to making more human errors, which can be 
eliminated with automated quantification which primarily involves 
image segmentation. Multiple methods have been developed to 
reduce the over segmentation problem with the watershed algorithm 
used for automatic segmentation for images like the ones containing 
tumor spheres. Parvati et al. have used morphological operations of 
erosion and dilation to mark the foreground regions before applying 
watershed algorithm [11]. Cheng and Rajapakse use shape markers in 
the watershed algorithm for segmenting nuclei of cells in fluorescence 
microscopy images [12].

Conclusion
In the present manuscript, instead of depending on the features 

obtained from the original distance transform matrix, we apply 
smoothing filters to the distance transform which effectively replaces 
superfluous minima with locally averaged distance values. This 
technique makes these minima disappear in the smoothed form of 
the distance transform. We demonstrated using medical images that 
applying the watershed algorithm to the smoothed distance transform 
matrix achieves high efficiency for tumor spheres quantification.
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