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INTRODUCTION

Previous studies in sports science suggest that regular exercise is 
beneficial for our health, for example, it reduces the chances of 
developing heart disease [1-4]. Nevertheless, the consequences of 
performing exhausting endurance activities remain unclear. For 
example, a study looking at Tour de France participants found 
a significantly lower rate of cardiovascular events and longer life 
expectancy compared to age-matched, ‘ordinary’ French men [5]. 
However, pushing one’s body to the limit and constantly subjecting 

it to intense training, such as running a marathon, can have the 
opposite effect [6,7]. A possible explanation for these apparently 
contrasting situations is that other covariates may trigger our 
bodies to adapt to intense exercise. One hypothesis suggested that 
these differences may be due to age and training conditions [8].

To better understand what happens in the human body, the present 
study analyzed changes in the gene expression of subjects after they 
had run a marathon. Previous work focusing on gene expression 
during an ultramarathon reported a significant impact on the 

ABSTRACT

Objective: Given that endurance exercise can have a huge impact on nonelite athletes, this study set out to analyze 
differentially expressed genes and pathways before and after a marathon, then subsequently assess which body systems 
may be deregulated during such activity.

Methods: The study included 60 nonelite athletes (42 men and 18 women) participating in the Barcelona Marathon. 
Blood samples were extracted at three different time points: before the marathon at baseline levels (START), 
immediately upon completion (FINISH), and 24 hours after its completion (24REST). Differential gene expression, 
GO term, and KEGG pathway analyses were conducted on the samples from each of the groups and three different 
comparisons made: C1 (START vs. FINISH), C2 (FINISH vs. 24REST), and C3 (START vs. 24REST). 

Results: The values for differential gene expression, GO terms, and KEGG pathways, respectively, were 9534, 162, 
and 61 in START vs. FINISH; 9454, 131, and 59 in FINISH vs. 24REST; 454, 14, and 8 in START vs. 24REST. 
When expression immediately after the marathon (FINISH) was compared with the other two groups (C1 and C2), 
we observed significant enrichment of terms related to the immune system, mitochondria, inflammatory markers, 
viral transcription and replication, reactive oxygen species, and lipid metabolism. Furthermore, upon comparing 
pre-marathon expression with levels 24 hours after its completion, the enriched GO terms were associated with 
mitochondrial activity, reactive oxygen species, and lipid metabolism.

Conclusion: Performing strenuous exercise deregulated immune system function, inflammatory markers, and 
mitochondrial terms, introducing a higher risk of infection in the period after the marathon, and it could alter the 
oxidation environment and lipid metabolism. While gene expression did not fully recovery 24 hours after the race, it 
was significantly closer to the baseline values than it was immediately after exercising.
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sample preparation kit (Illumina, San Diego, CA) and using a 
Globin Block pack according to the manufacturer’s instructions 
and sequenced on a HiSeq2000 Sequencing System (Illumina).

Prior (to check either RNA integrity or RNA quality) and posterior 
(to ensure samples accomplish several parameters, Table S1) quality 
control checks were performed to discard samples that lacked 
sufficient quality for the following analysis. 

Gene count

The 74-bp sequenced, paired-end reads were mapped to the 
GRCh38 reference genome using the STAR algorithm as the 
aligner and the standard parameters of the pipeline and salmon 
for gene quantification. Genes were annotated in accordance with 
Ensembl annotation.

Subjects for whom a valid count matrix could not be retrieved from 
Nextflow at any of the three time points (either due to difficulties 
collecting blood samples or extracting RNA or because of the low 
quality of the sequencing output) were discarded in this step. 

The following analyses were all performed with R. Packages were 
used to filter genes with low expression levels and implement sample 
normalization [14,15]. Normalization was done by calculating 
scaling factors to convert raw library sizes into effective library 
sizes considering the library length. Each sample was corrected 
with the normalization factor after calculating the counts and the 
correction was included in the analysis. Other authors [16] have 
also discarded genes with low expression levels from the analysis 
to increase confidence and the number of Differently Expressed 
Genes (DEGs) observed. In this study, we used a function from the 
edgeR package, only keeping those genes with at least minimum 
count reads in all samples. 

As not all samples were sequenced in the same run, we considered 
every group of samples sequenced together as a single batch. Sva, 
and more specifically its combat function, was used to correct any 
noise or batch effect that this method might introduce.

Fitted linear regression models of gene expression

The filtered, normalized matrix of counts described above was used 
as input for the downward analysis. 

First, we performed a Principal Component Analysis (PCA) and 
then used the visualization of the individuals’ coordinates to 
consider covariates or clusters of data in the following steps. 

The analysis was conducted using the Limma [17] package to 
build linear models for RNA-Seq data. The design matrix was 
built considering the covariates found with the abovementioned 
method:

Design matrix=0+V g+V s+Vi (1)

Where 0 corresponds to the matrix without an intercept, Vg 
indicates a group (START, FINISH, 24REST), and Vs. and Vi refer 
to the sex and individual variables, respectively.

The matrix was built without an intercept because we did not intend 
to compare the expression of two of the groups against a control, 
but rather to compare all three time points with the others: START 
vs. FINISH (FINISH levels –START levels); FINISH vs. 24REST 
(FINISH levels-24REST levels); START vs. 24REST (24REST 
levels - START levels). 

Differential Expression Gene (DEG) analysis

After creating the linear model, we applied the lmFit function 

immune and inflammatory systems [9]. Furthermore, differentially 
expressed pathways were linked to protein synthesis repression, an 
altered immune system, and infectious disease-related mechanisms. 
Some studies suggest that strenuous exercise can induce immune 
system dysfunction and increase the risk of infection [10,11], while 
endurance activities could also have a direct impact on fatty acid 
metabolism. High-intensity training may increase the prevalence 
and severity of coronary atherosclerosis [12] and modify insulin 
resistance in humans [13]. 

Consequently, research into the impact of intense sports on health, 
both at a professional or amateur level, has grown recently, with a 
particular focus on the changes that this practice may cause in our 
genome so that we may mitigate any negative effects. Therefore, the 
aim of this study was to assess the effect of an abnormally intense 
physical effort on gene expression in blood samples. This was done 
by identifying genes with significantly different expression levels 
after the subjects had run a marathon; then studying the genes’ 
biological implications through pathway and gene ontology term 
analyses and assessing their significance during the race; and 
finally defining their expression recovery levels 24 hours after the 
strenuous exercise.

MATERIALS AND METHODS 

Sample collection

We extracted 2.5 mL of whole blood from 60 nonelite athletes (42 
men and 18 women) before and after they participated in the 2016 
Barcelona Marathon (42 km running). The samples were collected 
immediately before the start of the race (START), immediately after 
the race (FINISH), and 24 hours after completing the marathon 
(24REST). 

The subjects were aged between 20 and 55 years; their heights 
and weights were also recorded. Subjects trained an average of 
7.5 hours/week. All the steps in the workflow are summarized in 
Figure 1.

RNA extraction 

Intracellular RNA was isolated from each subject’s whole blood 
sample and collected in PAXgene Blood RNA Tubes following the 
instructions of the PAXgene Blood RNA Kit (QIAGEN GmbH, 
Germany). Total RNA was stored at -80°C until used. The 
FINISH time point samples were collected in a pavilion close to 
the marathon’s finish line that was perfectly equipped to conduct 
blood extractions. The START and 24REST samples, on the other 
hand, were obtained at the Hospital de la Sant Creu i Sant Pau. 
The samples were sent to Banc de Sang I Teixits (BST), Barcelona’s 
blood and tissue bank, for RNA extraction and sequencing. RNA 
samples were prepared for sequencing with the Illumina TruSeq 

Figure 1: Steps performed in this analysis.
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Figure 2: Heatmap: the X-axis indicates all the samples and the Y-axis shows the top 500 most variable genes.

from sva package to fit a linear model to each gene. Given these 
linear models, eBayes was used to compute moderated t-statistics, 
moderated F-statistic, and log-odds of differential expression 
by empirical Bayes moderation of the standard errors toward a 
common value. This method was used to measure any quantitative 
changes in expression levels between the experimental groups.

All p-values were corrected by applying the Bonferroni multiple 
comparison correction method [18]. Bonferroni is a very 
conservative method that reduces the false positive rate and was 
performed in all the analyses carried out in this study.

The following tests were applied three times, once to each 
comparison of the expression values at different time points. For 
convenience, these comparisons will be referred to as C1 (START 
vs. FINISH), C2 (FINISH vs. 24REST), and C3 (START vs. 
24REST).

Gene ontology analysis

A Gene Ontology (GO) analysis was performed using the GOstats 
package [19] to test for both over- and underrepresented GO terms. 
The significant genes derived from the linear models mentioned 
in the previous section (e.g., genes with a corrected p-value <0.05) 
were used as the input in the GO analysis for each of the compared 
groups (C1, C2, and C3). A conditional hypergeometric test was 
used to identify relationships among the GO terms. This package, 
given a subclass of HyperGParams, computed hypergeometric 
p-values for over- or underrepresentation of each term in the given 
category (gene ontologies in this case) among the specified gene set.

The results from the GOstats package were filtered according to 
three main parameters: the total number of genes included in 
the GO term (size), the number of observed genes from the input 
population (count), and the probability of finding all those genes 

just by chance (odds ratio) and were represented using GOplot 
package [20].

KEGG pathway analysis

We used the same methodology as described in the previous 
section and the hypergeometric test was conducted using the 
signature Search package [21]. More specifically, we applied the 
enrichKEGG2 function, which returns KEGG pathway enrichment 
results when given a vector of gene identifiers.

RESULTS

After the checking the quality and filtering the samples, all analyses 
were performed on 60 (42 men and 18 women) of the initial 
population of 78 participants. Moreover, after taking out the genes 
with low expression levels, the initial input matrix contained 180 
samples (3 time points for 60 subjects) and 14,235 genes (with 
Ensembl annotation).

We generated a heatmap using the gplots package [22] for the top 
500 most variable genes in Figure 2, which included hierarchical 
clustering with a complete linkage method.

The initial results suggest a clear difference between the FINISH 
samples (purple) and the STAR and 24REST samples (green and 
yellow).

Identifying covariates

If we look at dim2 (X-axis), there was a clear separation between the 
START and 24REST samples compared to the FINISH samples. 
With respect to the covariates, sex was identified as a parameter of 
inter-variability given the clear difference in dim1 between females 
and males. Moreover, intra-variability between samples also needs 
to be considered (Figure 3).
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Figure 3: Clusterization of the different samples: Red (START), green (24REST), and black (FINISH). M indicates male and F indicates female.

IL10RA -1091 ***

SOCS4 1621 ***

NADSYN1 0,6154 ***

CD48 -643 ***

IL32 -0,8615 ***

CCR1 1453 ***

IL6ST 1033 ***

IL6R 1501 ***

IL10RB 1668 ***

IL15 -1578 ***

LRRC8D -0,9206 ***

CCR5 -1123 ***

SOCS6 0,6181 ***

CCL5 744 ***

SOCS5 0,5578 ***

GPX1 -0,5111 ***

CCR10 -0,5314 ***

ICOS 0,4613 ***

CCR6 -0,7067 ***

SOCS2 0,3546 ***

GPX3 -0,9665 ***

SOD2 -0,4221 ***

CCR4 -0,8518 ***

CD19 -246 ***

NADK -0,4668 ***

LRRC8C -0,4983 ***

CCR2 0,6099 ***

DNMT3A 0,6606 ***

SOCS1 0,5241 *

CLEC10A 0,1289 -

Note: (***), (**), and (*) indicate adjusted p-values (Bonferroni) of <0.001, 
<0.01, and <0.05, respectively.

As for the chemokines, most of the downregulated genes were 
expressed by T cell lymphocytes (CCR4, CCR5, CCR6, CCR9, 

DEGS

Differential gene expression analysis revealed that 9534 of the 
initial 14,144 genes were Differentially Expressed (DE) in C1, 
9454 in C2, and only 454 in C3. Given how the groups were 
compared, the overexpression in groups C1 and C2 suggests 
that expression was significantly higher after the race (i.e., after 
strenuous exercise) than when at rest. While the overexpression 
of gene levels in comparison C3 indicates there was significantly 
higher level of gene expression 24 hours after the race compared to 
baseline levels (which suggests that subjects still had not recovered 
baseline expression levels after 24 hours rest).

We also performed a deeper analysis of the DE genes for each 
group comparison, with a particular emphasis on the biological 
function of the most significant genes.

START vs. FINISH (C1)

The genes in this comparison with significantly different 
expression levels were mainly associated with immune cell 
markers, chemokines, and interleukins (Table 1). Of the immune 
cell markers, CD48, CD19, LRRC8B, LRRC8C, and LRRC8D 
genes were found to be downregulated. The first two genes are 
involved in the B cell life cycle; in fact they are reliable markers 
of B lymphocyte activation and pre-B cells, respectively. The other 
three genes also play a fundamental role in B cell maturation and 
belong to the T cell activation leucine repeat-rich protein family. 
CD16 and CLEC10A, on the other hand, were significantly 
overexpressed. CD16 is a surface antigen preferentially expressed in 
monocytes, while CLEC10A is involved in the body’s inflammatory 
and immune response. CLEC10A mRNA expression is observed 
in intermediate monocytes, but most of the expression occurs in 
dendritic cells [23].
Table 1: Basic information of CRA and burnout under investigation.

ID logFC Adj. p-value

LRRC8B -1687 ***

CCR9 -1,12 ***

IL4R -1225 ***
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GPX7 -0,1831 -

TLR2 0,09307 -

IFNGR2 0,1658 -

SOD1 -0,1404 -

TLR4 0,2753 -

GPX4 -0,0576 -

MMP9 -0,01823 -

Note: (***), (**), and (*) indicate adjusted p-values (Bonferroni) of <0.001, 
<0.01, and <0.05, respectively.

FINISH vs. 24REST (C2)

The results of the C2 comparison were very similar to those of C1. 
All the genes reported in C1 were also differentially expressed in 
C2 (Tables S4-S6). However, it is noteworthy that one of the top DE 
genes in C1 (CLEC10A) was not significantly DE in C2, as shown 
in Table S7.

START vs. 24REST (C3)

As mentioned above, only 454 genes were deregulated in C3, which 
is less than 5% of the DE genes in the other two comparisons. 
Not only was the number of significant DE genes much lower, but 
the genes were also different from those found in the other two 
comparisons (Tables S8-S11). 

The top 10 DE genes for C3 are summarized in Table 3. Some 
cell progression inhibitors, such as CDKN1A/P21 and PPP6C, 
were found to be overexpressed. Furthermore, CDK17, which 
is involved in transcription initiation and DNA repair, was also 
upregulated.

Nevertheless, not all the overexpressed genes were involved 
in cell life functions. Some genes related to viral expression, 
including NFIC (which is involved in cell transcription and acts 
as a replication factor for adenovirus DNA replication) and RFS1 
(which facilitates the transcription of hepatitis B virus genes), were 
also overexpressed.

Furthermore, we found genes associated with protein synthesis 
and degradation. For example, ZFAND5 (which is involved in 
protein degradation via the ubiquitin–proteasome system, besides 
playing a role in protein degradation during muscle atrophy) 
and EBNA1BP2 (involved in processing the 27S pre-rRNA). 
Finally, RFX3, an inflammatory gene previously reported as being 
overexpressed during exercise [31], was found to be overregulated.

By contrast to those genes, two of the top DE genes in the C3 
comparison were downregulated: MANEAL and PFKM. It is 
interesting to highlight that a relationship between PFKM and 
exercise intolerance has previously been reported in PFKM 
knockdown mice (Table 3) [32].
Table 3: The top 10 differentially expressed genes in START vs. 24REST 
comparison (C3).

ID logFC adj. p-value

NFIC 0,3923 ***

CDKN1A 0,3886 ***

MANEAL -0,299 ***

ZFAND5 0,3448 ***

RSF1 0,2391 ***

PPP6C 0,2812 ***

CDK7 0,3916 ***

PFKM -0,3182 ***

and CCR10), whereas some genes related to the family of 
suppressors of cytokine signaling proteins were overexpressed 
(SOCS1, SOCS2, SOCS4, SOCS5, and SOCS6). Conversely, not 
all the genes related to cytokines were downregulated. Some genes, 
such as CCL5, which exhibit chemotaxis for T cells, eosinophils, 
and basophils but also induce the proliferation and activation 
of certain Natural Killer (NK) cells [24], and important specific 
cytokine receptors for monocytes, such as CCR2 and CCR1, were 
found to be overexpressed. 

The last family of genes that stood out as DEGs was Interleukins 
(IL). The top downregulated IL were IL-4, IL-32, and IL-15. IL-
15 exhibits a broad activity and induces the differentiation and 
proliferation of T, B, and natural killer cells [25]. IL-32 is a pro-
inflammatory cytokine involved in autoimmune diseases, such 
as rheumatoid arthritis [26], but it can also help protect the 
host against certain respiratory diseases, including tuberculosis 
[27]. Finally, IL-4 is an anti-inflammatory cytokine that inhibits 
IL-6 synthesis. However, the IL that we found to be statistically 
overexpressed were IL-6, a cytokine produced by myocytes when 
muscles contract [28], and IL-10 related protein, although not all 
the IL-10 interleukins were overexpressed. In fact, while ICOS (a 
protein that superinduces IL-10 synthesis) and IL10RB showed 
significantly higher expression levels in the FINISH group than the 
START group, IL-10RA (an IL-10 receptor) was downregulated in 
the same conditions.

As additional information, supplementary Tables S2 and S3 
contain the DE genes related to Th1 and Th2 cells, respectively. 
These cells play an important role in immunity and have also been 
found to be deregulated in similar studies [29].

Table 1 also includes certain proteins that regulate oxidative stress, 
including the glutathione peroxidase family (GPX1, GPX3) and 
iron/manganese Superoxide Dismutase (SOD2), which were also 
downregulated. DNMT3A, which is an important gene related to 
reducing the oxidative environment, however, was overexpressed.

As such, we also detected several of the DEG inflammatory markers 
described in other studies; 15 out of 23 inflammatory markers 
reported elsewhere [30] were significantly differentially expressed 
in the present study (Table 2).
Table 2: Table with differentially expressed genes related to inflammatory 
markers in the START vs. FINISH comparison (C1).

ID logFC adj. p-value

IL4R -1,418 ***

CXCL16 1,115 ***

IL1B -1,087 ***

IL6ST 1,138 ***

IL6R 1,498 ***

IL1R1 0,6862 ***

IL10RB 1,477 ***

CCL5 0,7068 ***

TGFBRAP1 -0,7439 ***

IL1RN -0,6001 ***

TNF -0,5945 ***

TGFBR3 0,5307 ***

CCR4 -0,7112 ***

HSPA6 -0,6677 ***

CCR2 0,5805 ***

GATA3 0,1996 -
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RFX3 0,3702 ***

EBNA1BP2 0,3166 ***

Note: (***), (**), and (*) indicate adjusted p-values (Bonferroni) of <0.001, 
<0.01, and <0.05, respectively. 

Gene ontology term enrichment analysis

After performing conditional GO analysis and filtering the results 
by size and counts, 162 enriched GO terms were found in C1, 131 
in C2, and 14 in C3. A complete list of all GO terms is given in 
Table S12 for C1 and S7 for C2.

Both comparisons returned similar results, while the top results 
for FINISH vs. 24REST are shown in Figure 4a. The top enriched 
GO terms were related to mitochondrial functions, T and B cell 
activation (which were downregulated in the FINISH samples), 
and virus-related GO terms (which were upregulated, in this case) 
(Figures 4a-4c).

The results of the comparison C3, START vs. 24REST, are shown 
in Table 4. Most of the enriched GO terms were related to energy 
generation processes, such as the electron transport chain or ATP 
synthesis.
Table 4: Differentially expressed GO terms in START vs. 24REST 
comparison (C3).

Terms Adj.p-value

Chromatin-mediated maintenance of 
transcription

***

Regulation of mitotic spindle assembly ***

Mitochondrial respiratory chain complex I 
assembly

***

Mitochondrial electron transport ***

ATP synthesis coupled electron transport ***

Translation initiation ***

SRP-dependent cotranslational protein targeting 
to membrane

***

Establishment of protein localization to 
endoplasmic reticulum

***

Nuclear-transcribed mRNA catabolic process ***

Electron transport chain ***

Viral transcription **

Protein targeting to membrane *

ATP metabolic process *

Endoplasmic reticulum to Golgi vesicle-mediated 
transport

*

Note: (***), (**), and (*) indicate adjusted p-values (Bonferroni) of <0.001, 
<0.01, and <0.05, respectively.

KEGG pathway enrichment analysis

The KEGG pathway analysis was conducted as explained in the 
Materials and methods section, using the DE genes as input. Akin 
to the method for the GO term analysis, the pathway analysis was 
applied once at each of the time comparison points (C1, C2, and 
C3).

The total number of pathways enriched with DE genes were 61, 59, 
and 8 for comparisons C1, C2, and C3, respectively. Tables S13 
and S14 show the total list of pathways for comparisons C1 and 
C2, while the list of enriched pathways for C3 is shown in Table 5.

The pathway analysis results closely resembled those of the GO 
term analysis, strengthening the significance of the findings. 
Moreover, the results of the C1 and C2 comparisons were also 
similar to each other but differed from C3. For comparisons C1 
and C2, the pathways related to apoptosis, cellular senescence, 
mitophagy, and necroptosis were enriched (Tables S13 and S14). 
Further top enriched terms were a group of pathways related to 
lipid metabolism, including fatty acid metabolism, lipid and 
atherosclerosis, and some Sphingolipid signaling pathways. 

In the FINISH vs. 24REST comparison (C2), insulin resistance and 
Vascular Endothelial Growth Factor (VEGF) signaling pathways, 
as well as those related to oxidative environment maintenance, 
were among the top significant results (Table 5).
Table 5: Differentially expressed KEGG pathways in the START vs. 
24REST comparison (C3).

Description Adj. p-value

Prion disease ***

Thermogenesis ***

Chemical carcinogenesis - reactive 
oxygen species

***

Oxidative phosphorylation ***

Parkinson’s disease ***

Diabetic cardiomyopathy ***

Nonalcoholic fatty liver disease **

Ribosome **

Note: (***), (**), and (*) indicate adjusted p-values (Bonferroni) of <0.001, 
<0.01, and <0.05, respectively. 

Figure 1: Steps performed in this analysis.

Figure 2: Heatmap: the X-axis indicates all the samples and the Y-axis 
shows the top 500 most variable genes.

Figure 3: Clusterization of the different samples: Red (START), green 
(24REST), and black (FINISH). M indicates male and F indicates female.

Figure 4: Differentially expressed GO terms related to viruses (A), the 
immune system (B), and mitochondrial functions (C) in FINISH vs. 
24REST conditions with an adjusted p-value Bonferroni of <0.05.

Figure 4: Differentially expressed GO terms related to viruses (A), 
the immune system (B), and mitochondrial functions (C) in FINISH 
vs. 24REST conditions with an adjusted p-value Bonferroni of <0.05. 



Condeminas PE, et al.

Transcriptomics, Vol.9 Iss.1 No: 1000134 7

OPEN ACCESS Freely available online

DISCUSSION 

Previous studies have investigated the effect of strenuous exercise 
on human gene expression. However, the present longitudinal 
study was carried out in nonelite athletes to measure the effects 
of an endurance event and determine if gene expression levels 
recovered after 24 hours. In general, the results suggest that 
strenuous exercise can induce an inflammatory response, activate 
an oxidative environment, and downregulate the immune system. 

Previous studies have reported that endurance exercise induces an 
inflammatory environment, which indicates that long periods of 
strenuous exercise can generally lead to higher levels of inflammatory 
mediators and therefore may increase the risk of injury and chronic 
inflammation [33]. Our results mirrored these findings for 15 out 
of 23 inflammatory markers that were significantly differentially 
expressed between baseline (START) and FINISH levels (Table 2).

The immune system was also downregulated after performing the 
endurance exercise. The C1 (START vs. FINISH) and C2 (FINISH 
vs. 24REST) comparisons show that downregulated differentially 
expressed genes were enriched in GO terms and KEGG pathways 
related to B and T cells and other immune system components. 
This immune system downregulation may result in a higher risk of 
infection after performing endurance exercise, as reported by other 
authors [34,35]. What is more, infection and replication virus-
associated terms were upregulated, which agrees with previous 
studies and indicates that endurance athletes experience extreme 
physiological stress during strenuous exercise, which is again 
associated with temporary immunodepression and a higher risk of 
infection, particularly Upper Respiratory Tract Infections (URTI) 
[36] given the immune system is weakened. 

On the other hand, the C3 (START vs. 24REST) results reveal 
that 24 hours after performing endurance exercise, the immune 
system returned to almost the same levels as those before the race 
(baseline levels). 

Despite everything the immune system undergoes, some monocyte 
markers, specific cytokines, and IL are overexpressed. Monocytes are 
activated during strenuous exercise, leading to acute inflammation 
and hypoxemia [37]. Furthermore, after performing long-exposure 
exercise, several genes that regulate oxidative stress, such as the 
glutathione peroxidase family (GPX1, GPX3) and iron/manganese 
Superoxide Dismutase (SOD2), were downregulated. This 
oxidative environment (ROS) could be the molecular link between 
monocyte chemotaxis and inflammatory pain [38]. Further studies 
are necessary to follow up on these observations and determine the 
impact and importance of monocytes in this type of exercise.

One gene that may play a more significant role in reducing the 
oxidative environment generated by strenuous exercise is DNMT3A, 
which was overexpressed in C1 (START vs. FINISH). DNMT3A 
expression in red oxidative muscle increases significantly following a 
bout of endurance exercise [39]. Muscle-specific Dnmt3a knockout 
mice have reduced tolerance to endurance exercise, accompanied 
by a reduction in oxidative capacity and mitochondrial respiration. 
Moreover, Dnmt3a-deficient muscle overproduces Reactive Oxygen 
Species (ROS), the main contributor to muscle dysfunction.

As mentioned in the Results section, apart from the inflammatory 
and immune systems, functions and genes related to mitochondria 
activity were among the top deregulated genes. One of the principal 
mitochondrial functions is to generate energy through the electron 
transport chain. Thus, we can infer that genes related to this 

organelle will be differentially expressed during endurance exercise 
because athletes need and consume more energy compared to 
baseline levels. Our results corroborated these expectations.

Another point of interest concerns comparison C3, that is, 
FINISH compared to 24REST samples, as baseline expression 
levels were not always fully recovered. Some of those enriched GO 
terms are associated with mitochondrial, electron chain, and ATP 
metabolism terms, which implies that the nonelite athletes did not 
have the same energy generation capacity 24 hours after the race 
as before starting.

Finally, some KEGG pathways related to diabetic cardiomyopathy 
and atherosclerosis were deregulated. Previous studies have 
reported a significantly higher rate of coronary artery calcification 
in long-term marathon athletes [40], and long-term male marathon 
runners may have paradoxically increased coronary artery plaque 
volume.

CONCLUSION

In conclusion, completing an endurance exercise, such as running 
a marathon, has a huge impact on gene expression levels and, 
consequently, the deregulation of several metabolic pathways and 
systems. With regard to immunity, downregulation of T and B 
lymphocytes lead to a temporary increase in the risk of infection 
after performing exhaustive exercise. On the other hand, monocytes 
may play a fundamental role during strenuous exercise, because 
their deregulation might be associated with lipid metabolism, 
inflammation, and the oxidative environment. 

Nonelite athletes require such a huge amount of energy needed 
to run a race like this that their mitochondrial activity does not 
fully recover after 24 hours of rest. Some pathways related to 
atherosclerosis were also deregulated after finishing the race, 
so maybe protective measures should be taken before such an 
exhaustive effort. 

This study may help establish future training routines or 
nutritional guidelines based on individual gene expression levels. 
What is more, the time to recover after strenuous exercise could 
be reduced through correct training, healthy routines, and specific 
gene expression information.
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