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Abstract
In this article, we review the role of T regulatory cells (Tregs) in the development and prevention of type 1 

diabetes. We first examine the definition of human Tregs, the generation of Tregs in the thymus and the periphery, 
their mode of action and their important role in the regulation of the immune response. We then examine the defects 
in Tregs observed thus far in type 1 diabetes and their role in the development of the disease. Finally, we point to 
possible clinical applications using Tregs as a therapeutic target for the prevention of type 1 diabetes. 
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Introduction
Type 1 diabetes results from autoimmune self destruction of the 

pancreatic β cells leading to absolute insulin deficiency and requiring 
life-long insulin treatment. This autoimmune reaction is triggered 
by the environmental factors in genetically predisposed individuals. 
Although recent knowledge has contributed to our understanding 
of the autoimmune pathogenesis of type 1 diabetes, there remains 
no unifying theory of disease causation. However, it is accepted that 
autoimmune disease in general results from the dysregulation of the 
basic processes designed to maintain self tolerance [1,2]. In the few 
cases where it has been possible to examine the endocrine pancreas of 
newly-diagnosed type 1 diabetes patients, massive infiltration of mostly 
CD8+ T lymphocytes was recorded in insulin-containing islets, but not 
in islets devoid of insulin. CD4+ T cells, monocytes and B lymphocytes 
were also found in decreasing order [3-6].

Over the past few years, there has been a steadily increasing interest 
in regulatory T lymphocytes (Tregs) that exhibit several of the properties 
of the previously studied and so-called suppressor T cells [7,8]. In this 
review we will examine the generation of Tregs in the thymus and the 
periphery, their mode of action and importance in the regulation of the 
immune response. We will then examine the defects in Tregs observed 
thus far in type 1 diabetes and their role in the development of the 
disease. Finally, we will point to a few developments that may lead to 
possible therapeutic applications using Tregs as a therapeutic target for 
the prevention of type 1 diabetes. 

The Definition of Tregs
Nearly 40 years ago immunologists postulated the concept of 

regulation of the immune response by T suppressor lymphocytes [9]. 
This was followed by a flurry of activity, identifying several phenotypic 
markers for the various cell types involved in the suppression of 
excessive immune responsiveness (CD8+ suppressor effector cells, CD4+ 
suppressor-inducer cells etc.), as well as several secreted suppressor 
factors [10,11]. The whole concept eventually fell into disrepute, mostly 

because of the lack of reproducible assays for these cells and lack of 
molecular identification of the factors involved [11,12]. The rebirth of 
the regulatory-suppressor cell originated from the seminal observation 
that thymectomy of neonatal mice on day 3 resulted in autoimmune 
gastritis, which could be corrected by transfusion of syngeneic 
CD4+CD25+ T cells, but not their CD4+CD25- counterparts [7]. 

The phenotypic definition of human Tregs is still under discussion, 
and has been under continuous evolution. CD4+ Treg cells have been 
most intensively studied. Nowadays, various phenotype markers are 
used not only to distinguish Tregs from other CD4+ cells, but also 
to identify functional (sub) classes of Tregs. The high constitutive 
surface expression of the IL-2 receptor alpha chain (CD25) is generally 
considered as a characteristic feature of the vast majority of human 
Tregs and regulatory activity is enriched in CD4+CD25high T cells 
[13-15]. Upon activation of T cells, independently of their regulatory 
capacity, CD25 can become up-regulated and highly expressed on 
Teffs as well. This puzzle of distinguishing between bona-fide Tregs and 
recently activated Teffs has been solved by a very effective utilization 
of the CD45RA marker (below). A considerable number of other 
surface markers have been reported to be expressed on human Tregs, 
such as CTLA-4 (CD152), L-selectin (CD62L), glucocorticoid-induced 
tumour necrosis factor receptor (GITR), TGF-β, CD95 and PD-L1 
[16,17]. Recent studies have demonstrated that down-regulation 
of the IL-7 receptor α-chain (CD127) distinguishes Treg cells from 
activated T cells, facilitating the functional characterization of a more 
representative population [18]. 
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Intracellular expression of the FoxP3 transcription factor is the 
hallmark of Tregs, as the presence of this protein is necessary for their 
development. FoxP3 is a member of the forkhead or winged helix 
family of proteins and the respective gene is located on chromosome X 
[19]. FoxP3-mutant mice have the scurfy phenotype, characterized by 
massive lymphoproliferation, autoimmunity and death in the second 
to third month of life. In humans, mutations in the FoxP3 gene lead 
to the IPEX (Immune deficiency-polyendocrinopathy-enteropathy-
X-linked) syndrome. This is characterized by total absence of Tregs, 
food allergy, enteropathy, eczema and polyendocrinopathy, including 
neonatal type 1 diabetes and less often autoimmune thyroid disease 
[20,21]. The FoxP3 protein is also transiently expressed in human 
activated Teff cells (Teffs), albeit at a lower protein level than in Tregs. 
However, this transient expression does not confer any regulatory 
properties on such Teffs. Furthermore, in Tregs the region upstream 
of the FoxP3 gene is completely demethylated, an indication of 
persistent and sustained expression of this master switch by Tregs. 
In contrast, this region is found to be methylated in Teffs. Therefore, 
DNA demethylation of the 5’ upstream region and the STAT-5 
responsive element in the human FoxP3 locus can discriminate 
Tregs from conventional Teffs, even if the latter transiently express 
FoxP3 [22-24]. A recent detailed analysis showed that FoxP3+ CD4 T 
cells are composed of three phenotypically and functionally distinct 
subpopulations, depending on the expression of the CD45RA molecule: 
CD25+++CD45RA-FoxP3highCD127-/low activated Tregs (aTregs), 
CD25++CD45RA+FoxP3lowCD127-/low resting Treg (rTregs) cells (with 
the former showing higher suppressive capacity in vitro compared to 
the latter) and a CD25++CD45RA-FoxP3lowCD127+ group of non-
suppressive Teff cells [24]. It so happens that the CD25+++ population 
is over 90% CD45RA- rendering this separation a very effective one 
[24]. Hence, the currently accepted way of recognizing CD4+ T cells 
with regulatory function is by the highest expression of CD25, the 
high intracellular expression of FoxP3, and the low or no expression of 
CD127 (CD4+CD25highFoxP3+CD127low/- cells).

Generation of Tregs 
Tregs are generally classified into two categories, natural Tregs 

(nTregs) and adaptive or induced Tregs (iTregs). Natural Tregs 
primarily emerge from the thymus, whereas iTregs are generated in 
the periphery from naive T cells after antigen exposure [25]. Both 
T cell subsets share a similar phenotype, express intracellularly the 
transcription factor FoxP3 and possess suppressive capacity. Very 
recently, it has been shown that nTregs selectively express Helios, an 
Ikaros-family transcription factor [26].

The development of CD4++ T cells in the thymus rests upon the 
interaction of their antigen-specific T Cell Receptor (TCR) with self-
antigen bearing MHC II proteins in antigen presenting cells (APCs), 
first in the thymic cortex and then in the medulla. Absence of such 
interaction leads to their death by neglect, low affinity interaction to 
positive selection, and high affinity interaction to negative selection 
[2]. By contrast, the intermediate affinity interaction induces the 
genetic program for Tregs. This includes up-regulation of the Treg-
specific transcription factor FoxP3, the cell membrane molecules 
CD25, CTLA-4, down-regulation of IL-7Rα (CD127) and shutting off 
of the genes for IL-2 and the TH1-, TH2- and TH17-specific cytokines 
(IFNγ, IL-4, and IL-6, respectively), as well as the respective unique 
transcription factors T-bet, GATA-3 and ROR-C (RORγt in the mouse) 
that determine the corresponding CD4++ T cell fates [27-32] (Figure 
1). FoxP3 once induced, reinforces many of these processes ensuring 
thus the distinct phenotype and properties of CD4++ Tregs [32,33]. 

For several tissue-specific proteins their transcription in the thymus is 
under the control of the transcription factor Autoimmune Regulator 
(AIRE). Patients with mutations in this gene show defective expression 
of tissue-specific self-antigens in thymus, leading to autoimmune 
polyendocrinopathy candidiasis ectodermal dystrophy (APECED), or 
autoimmune polyendocrine syndrome 1 (APS1) [34]. Such patients 
have defective suppressive function of their Tregs, most probably due 
to the significantly decreased expression of FoxP3 protein in these cells, 
as compared to controls [35]. 

Induced Tregs arise from CD4+CD25- precursor cells in peripheral 
lymphoid organs [32]. It is possible that in the periphery iTregs may 
develop probably from recent thymic CD4++ T cell emigrants that 
have high affinity for MHC II++ self antigen, yet have escaped selection 
[36,37]. Certainly, dendritic cells synthesize and present self-antigen 
(including all of the major auto-antigens for type 1 diabetes) to CD4++ 
T cells [38] and under certain circumstances can be tolerogenic [37], 
leading to the induction of Tregs, yet the specific mechanisms are under 
debate. There is now considerable evidence that IL-2 and transforming 
growth factor (TGF)-β are required for the preservation of iTregs, and 
that both factors are needed by nTregs and iTregs for the induction and 
continuous expression of FoxP3 [39-41].
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Figure 1: Thymic selection and generation of the various CD4++ T 
lymphocyte subsets: negative selection, nTreg selection and positive 
selection of thymocytes in the medulla as the outcome of high affinity, 
intermediate affinity, and low affinity interaction of TCR on immature 
thymocytes and MHC II plus peptide on medullary APCs. The 
differentiation into Th1/Th2/Th17 etc cells, takes place in the periphery. 
Tregs may also be selected in the periphery under the influence of 
factors such as TGFβ and IL-2, and are then called iTregs [40-43].
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The Functional Role of Tregs
Tregs control the reactivity of self-reactive T effector cells that are 

not eliminated in the thymus and are thus responsible for maintaining 
peripheral self tolerance and immunological homeostasis. Initially, 
Tregs can control T cell activation, expansion and proliferation during 
lymph node priming. At this stage, Tregs colocalize with dendritic cells 
at the medullary-cortical junction at the T cell-B cell borders within 
the proximal lymph nodes [42]. In addition, Tregs can traffic to the site 
of inflammation and suppress the effector functions of immunocytes 
within the affected tissue [43].

The mechanisms used by Tregs to suppress immune responses are 
still unresolved, yet the prevailing view is that cell contact between Treg 
and Teff is obligatory [12-17,26-29]. This however, does not prevent 
subsequent bystander suppression as well, in the milieu generated by 
the thus activated Tregs [25,42]. In general, the activation of Tregs in 
vivo follows that of Teffs, and while capable of division, their functional 
programme consists of deactivation of the pathways found in Teffs, 
and up-regulation of pathways accumulating suppressive molecules 
in the cytoplasm, on their cell membrane and extracellularly (cAMP, 
CTLA-4, HLA-DR/DQ, TGFβ adenosine) [31,32,43,44] (Figure 2). 
In vitro activated human Tregs may directly kill activated CD4++ and 
CD8++ T cells in a perforin- or granzyme-dependent manner [45]. 
Although evidence for such cytotoxicity is lacking in vivo, patients 
with mutations in the perforin gene suffer from haemophagolytic 
lymphohistiocytosis (HLH), indicating a key involvement of perforin 
in immune regulation, perhaps via Tregs [46]. 

For another possible pathway, the transcription programme of 
Tregs includes diminution of TCR-induced downstream signaling 
and maintenance of a suppressive phenotype [32,33,47]. Specifically, 
the gene for the cAMP degrading enzyme phosphodiesterase 4 (pde4) 
is suppressed, while that of IL-7Rα is downregulated [31-33]. This 
leads to a considerable build-up of cAMP in Tregs. Upon proper Teff 
contact, Tregs establish communication with Teffs via gap junctions, 
transferring cAMP and rendering the latter cells inactive [48]. In 
addition, the CD39 and CD73 ectonucleases on the surface of Tregs 
use extracellular ATP to generate adenosine, which in turn activates the 

suppressive adenosine receptors on neighboring Teff cells [49]. CTLA-
4, a membrane molecule whose gene locus is already linked to type 
1 diabetes and autoimmunity (IDDM12) [50], binds with 20X higher 
affinity than CD28 to CD80/CD86 (B7 family) receptors, located on 
antigen-presenting cells (APCs) [3]. The CD28-CD80/86 interaction 
may function as the second signal to TCR—MHC II-peptide 
recognition. Thus, CTLA-4+ Tregs by tightly binding to CD80/86 
receptors on APCs block the APC-Teff interaction necessary for 
activation and also send negative signals, preventing such activation. It 
has recently been shown that TGFβ, in its immature or mature form, 
is found on the surface of human Treg cells, bound to the membrane 
protein GARP (Glycoprotein A-repetitions predominant protein) 
[51]. There, immature TGFβ may be converted to its mature form by 
a variety of proteins, such as furin, thrombospondin and certain Arg-
Gly-Asp—recognizing integrins [52,53]. The importance of TGFβ to 
the generation and maintenance of Tregs had long been demonstrated, 
and with this finding another potential mechanism of action of 
Tregs is revealed (Figure 2). The role of HLA-DR on the surface of 
CD4+CD25high Tregs is worth mentioning, as it is the HLA-DR+ fraction 
of such cells that exhibits the most potent regulatory activity [54]. As in 
most autoimmune diseases, specific HLA-DR/DQ alleles are associated 
with susceptibility to type 1 diabetes [55].

Findings for Tregs in Type 1 Diabetes
Experimental animal studies

In the NOD mouse model of type 1 diabetes various defects have 
been noted in the Treg (CD4++CD25+) compartment. It appears that 
such cells are defective in suppressing the proliferation of Teff cells 
[56,57]. Remarkably, Tregs from 4 weeks old NOD mice are capable 
of suppressing T cell proliferation, yet Teffs from older NOD mice are 
refractory to such suppression [58]. Tregs can affect Teffs at several levels 
(proximal lymph nodes, sites of tissue inflammation), by controlling 
T cell trafficking to tissues as well as their reactivation whenever the 
first line of protection in the draining lymph nodes fails [42,43,58], and 
the islet micro-environment takes on characteristics of the lymphoid 
system [59]. Experimental studies in mice have shown that diabetes 
progression depends on a delicate balance between effector TH cells 
and Tregs both in the pancreatic lymph nodes and within the inflamed 
pancreas [60,61]. After the onset of diabetes, autoimmunity progresses 
as the ratio between effector TH cells and Tregs within the inflamed 
pancreas continuously increases [62]. On the other hand, TGF-β may 
also induce Tregs directly through the induction of FoxP3 and/or Treg 
proliferation, even at the site of tissue damage [41]. Interestingly, a 
transient pulse of TGF-β in islet cells of NOD mice during the priming 
phase of diabetes is sufficient to inhibit disease onset and stimulate 
expansion of intra-islet Tregs [63]. 

In many experimental models for type 1 diabetes immune 
tolerance was obtained following treatment with immunosuppressants, 
including old studies with polyclonal anti- T cell antibodies [64,65] or 
monoclonal antibodies targeting specific receptors or pathways (such 
as CD3, CD4, CD8, ICOS, CTLA-Ig etc) [66-69]. In most of these cases 
the immune tolerance relied on the expansion of Tregs rather than on 
deletion or anergy of effector T cells [69]. Also, in studies with NOD 
mice where possible β-cell autoantigens were administrated, it was 
pointed again the major role of Tregs in the induction of self tolerance, 
even the nature of Tregs was not very precise [70,71]. Long-term 
survival of pancreatic islet allografts induced by a soluble fusion protein 
composed of CTLA-4-Ig in mice depends on tryptophan catabolism 
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Figure 2: Simplified view of Tregs interacting with other immunocytes at a 
peripheral lymphoid organ or at a site of inflammation. Known immunocytes 
(other T cells, monocytes/macrophages, DCs, B lymphocytes) that may 
interact with Tregs are depicted as well as most candidate interaction 
molecules. It is now evident that DCs are very important for the maintenance 
of the regulatory function of Tregs [39,40], and there is evidence that CD8 T 
regulatory cells as well as B regulatory cells may play a role in the immune 
circuit [103,104]; neither population is shown here.
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by dendritic cells, via the enzyme indolamine 2, 3–dioxygenase (IDO) 
[72,73], a known participant in the tolerogenic and Treg-inducing 
function of immature dendritic cells. Of great interest, CD4+CD25+ 
Tregs that adoptively transferred in NOD mice, effectively prevented 
or even reversed the disease [74].

Human studies

Unfortunately studies of Tregs in type 1 diabetes suffered from the 
lack of an acceptable criterion for the definition of Tregs. The first work 
to deal with Tregs in human type 1 diabetes showed a significantly 
decreased percentage of the CD4+CD25+ T cell fraction in young newly-
diagnosed patients compared to older controls [75]. Subsequent works 
in newly-diagnosed patients as well as in patients with long-standing 
diabetes could not find such differences, even when distinguishing 
between CD4+CD25+ (activated Teffs) and CD4+CD25high (Tregs); 
some of these works found a deceased regulatory function in type 1 
diabetes patients, while others did not. As there is a continuum of 
CD25 intensities from CD25+ to CD25+++ (CD25high), the distinction 
between two such populations was of necessity artificial. The Treg 
definition and separation outlined in [24], which is subsequent to 
all works estimating the percent of Tregs in type 1 diabetes patients, 
effectively solves this problem. Remarkably, the average values for 
these percentages differed considerably from one study to the other 
[76-78], with one study showing that there was an age-dependent 
increase in Tregs in controls [78]. Each of these works used essentially 
a different definition of Tregs. In a mini meta-analysis comparing these 
studies, the differences in testing for suppressor activity were pointed 
out and it was recommended that expression of FoxP3 should be used 
as a criterion, even though activated Teffs also express transiently lower 
levels of FoxP3 [79]. Yet, another study that grouped together all FoxP3-
expressing cells (i.e. including those Teffs transiently expressing the 
protein), reported no differences in the frequency of such cells between 
type 1 diabetes patients and controls [80]. A different group showed 
that CD4+CD25high Tregs from newly diagnosed type 1 diabetes patients 
and autoantibody-positive at risk subjects had a higher tendency for 
apoptosis, compared to such cells from age-matched controls or long-
standing type 1 diabetes patients [81]. Two subsequent studies also 
pointed to refractoriness of Teff cells to the action of Tregs as one 
reason for the defective regulatory function observed in type 1 diabetes 
patients [82,83]. Interestingly, Tregs in one of these works [82], appear 
as CD4dimCD25high cells, as also documented in a just published study 
by this same group and by us in a previous communication [84]. There 
has been no study enumerating Tregs after the seminal work by Miyara 
et al. in which issues regarding Foxp3 expression by Teffs and Tregs 
were settled, and active and resting Tregs were unequivocally defined 
[24]. Importantly, a histological study of pancreases from persons who 
died of type 1 diabetes as long as 6 months after clinical disease onset 
reported that FoxP3+ cells were rarely found in CD4+ T cell-infiltrated 
insulin-expressing islets, suggesting an inadequate presence of these 
cells at the site of inflammation and autoimmune attack [85].

A most interesting development has been the remarkable result 
of about 50% lower insulin requirement and higher C-peptide, 
found in responding type 1 diabetes patients, 4 years after brief 
anti-CD3 (Otelixizumab®) treatment upon diagnosis [86]. These 
responders started with an initially higher C-peptide level. A thorough 
investigation of the effect of this treatment on T cells did not reveal 
any preferential sparing of any category of T cells, even though in an 
abstract it was claimed that the antibody had a sparing effect on Tregs 

[87,88]. As this is the most promising immune intervention in type 1 
diabetes thus far, it deserves further attention, especially regarding the 
possible enhancement of Treg function and/or percent of cells. 

While several studies have mapped all the genes associated with 
the pathogenesis of type 1 diabetes, it has been very difficult thus far 
to decipher a possible mechanism of action for any of them that would 
include their role in the generation and function of Tregs. Tregs from 
type 1 diabetes patients have been shown to be defective in their IL-
2R signaling, compared to controls [89]. Just recently, a detailed study 
has shown that polymorphisms in the CD25 gene associated with 
susceptibility or with resistance to type 1 diabetes, could be linked 
to the level of expression of CD25 on Tregs and Teffs. Indeed using 
healthy controls it was shown that the disease-susceptible SNIPs 
were associated with significantly lower levels of expression of CD25 
in aTregs, rTregs, and Teffs, and diminished IL-2 responsiveness in 
antigen-expressing CD4 T cells, and also associated with lower FoxP3 
levels and lower levels of suppression of the proliferation of autologous 
Teffs [90]. These two studies make physiological sense, because Tregs 
cannot synthesize IL-2, rather they may obtain it from activated Teffs, 
after the latter have satisfied their own needs in the cytokine [43]. A 
lower level of CD25 in the membrane of Tregs would mean less efficient 
capture of IL-2 by the IL-2Rαβγc complex [91]. 

Also of interest for type 1 diabetes, is the observed emergence of 
host Tregs specific for the grafted tissue, and donor Tregs, specific 
for components of the host in transplantations [92]. There are no 
reports regarding Tregs after islet transplantation in humans, but 
the implications are obvious. Apparently, cyclosporine suppresses 
induced Treg generation from Teffs, while rapamycin supports it 
[93]. Interestingly, bone marrow transplant for correction of the IPEX 
syndrome in young males (whose symptoms included type 1 diabetes) 
resulted either in cure of type 1 diabetes via normal insulin secretion, 
and elimination of GAD antibody levels (4-month old child) or in a 
diminution of GADA levels and the daily insulin dose in another 
patient (1.5 years old); both patients evidenced appearance of sufficient 
Tregs after engraftment, that restored proper immune function [94,95].

Prospects in the Prevention of Type 1 Diabetes
Tregs are now well established as a new tool, not only for 

understanding type 1 diabetes pathogenesis, but also for giving new 
prospects in the prevention and treatment of the disease.

The defects of Tregs found in type 1 diabetes patients explain the 
loss of immune tolerance in these patients [75-83]. As the pathways for 
suppression by Tregs are elucidated and the roles of different molecules 
already found in Tregs become clearer, our understanding of their role 
in type 1 diabetes is expected to increase. The fact that bone marrow 
transplantation is accompanied by the appearance of functional Tregs 
at levels comparable to those in controls [94,95] offers hope of inducing 
tolerance via re-induction of a proper Treg repertoire. Methods for ex-
vivo large scale production of antigen-non-specific or antigen-specific 
Tregs are already in place [96,97]; these could become a good starting 
place for the lasting blockade of β-cell destruction and/or successful 
islet transplantation, with optimized sorting strategies that could 
dramatically improve the isolation of highly potent Tregs [98]. The 
use of autologous Tregs cultured ex-vivo could of course lead to a re-
appearance of disease after a temporary relapse, in a fashion that may 
be a re-enactment of what has been observed in a number of idiopathic 
juvenile rheumatoid arthritis patients, considering that type 1 diabetes 
has a very potent immune memory [99,100]. 
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The journey towards prevention and cure of type 1 diabetes has 
been a long one and Tregs show promise of being part of the solution 
[101]. The recent discovery of a transposition genetic element that is 
found in marsupial mammals and plays a decisive role in the induction 
of Tregs in the periphery will bear watching for possible application in 
many autoimmune diseases [102]. Of course, the transition of such cell 
therapies from animal studies to human clinical trials is a real challenge 
and knowledge of the purity and stability of cell therapy products is 
essential prior to their introduction into patients. After all, we are still 
under the Hippocratic dictum of doing no harm.
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