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Abstract

Pancreatic cancer is the fourth-leading cause of cancer deaths worldwide that considered as the malignant tumor
with the poorest prognosis and the lowest survival rate. This extremely violent disease is rarely diagnosed at an
early level and difficult to treat due to its resistance to radiation therapy and chemotherapy. Here, we show that the
receptor for advanced glycation end products (RAGE) and its ligands, advanced glycation end products (AGEs),
high-mobility group box 1 (HMGB1) and S100 protein family are required for pancreatic cancer development,
angiogenesis and metastasis through up-regulation of some anti-apoptotic molecules as matrix metalloproteinase -9
(MMP-9), kinase insert domain receptor (KDR), vascular endothelial growth factor (VEGF), platelet-derived growth
factor-B (PDGF-B), hypoxia-inducible factor 1 (HIF1α), signal transducer and activator of transcription 3 (pSTAT3)
and nuclear factor kappa B (NF-κB). In addition to the decrease in reactive oxygen species (ROS) those favouring
the cancer cell growth and metastasis. The role of RAGE in pancreatic carcinogenesis needs further studies to
investigate the relationship of RAGE with other anti-apoptotic and apoptotic molecules and examine the therapeutic
potentials of anti-RAGE drugs for pancreatic cancer.
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Introduction
Pancreatic cancer is a deadly disease, characterized by late

diagnosis, early metastasis and chemotherapy resistant [1]. Pancreatic
ductal adenocarcinoma (PDA) is a complex disease that arises from
the genetic alterations of KRAS, BRCA1, SMAD4, CDKN2A/p16 and
TP53 [2]. Activating KRAS mutations and p16 inactivation are genetic
abnormalities, most frequently detected in PDA [3]. Oncogenic
activation of the KRAS gene occurs in more than 90% of PDA and
plays a critical role in PDA malignancy [4]. The mean survival is
around six months, and the five years overall survival rate is less than
4% of the patients [5]. PDA is a highly mortal disease. It accounts for
only 3% of cancer cases each year but is currently the fourth common
cause of cancer mortality [6] due to advanced stage at diagnosis and
poor response to current treatment [7]. By 2030, PDA is expected to be
the 2nd leading cause of cancer death [8]. The best chance for survival
is early detection when the tumor can be treated with surgical aid [9].

RAGE and its ligands
The cell cycle is strictly regulated and controlled by a complex

network of cellular signalling pathways [10]. RAGE belongs to the
immunoglobulin superfamily of receptors [11] with a molecular weight
of about 55-kDa protein, has an extracellular part consisting of a
variable (V) immunoglobulin-like domain followed by two constant
domains, a single transmembrane domain and a cytosolic tail [12,13].
The N-terminus of the V domain is the ligand-binding site, and the
cytosolic tail that necessary for RAGE-induced intracellular signalling
[14]. Soluble RAGE (sRAGE) forms lack both the cytosolic and the
transmembrane domains [14,15]. sRAGE can be distinguished in

circulating blood [16] that can bind with RAGE ligands such as
advanced glycation end product (AGE) [12].

RAGE is expressed in a variety of tissues as heart, lung, skeletal
muscle and vessel wall. AGE-RAGE interactions inhibit the
prostacyclin production by human endothelial cells, which prompt
angiogenesis and thrombogenesis [17]. It is generally believed that
RAGE-induced pathways are implicated in the development of various
diseases [18,19]. RAGE plays a crucial role in numerous diseases
including diabetes, inflammation, and cancer [20]. RAGE interacts
with diverse ligands, including AGEs and β-amyloid fibrils, S100
protein family (S100B, S100P, S100A4, S100A6, S100A8, S100A9,
S100A11, S100A12, and S100A13), high mobility group box-1
(HMGB1), and prions [21,22].

AGEs formed by a non-enzymatic reaction between the ketone and
aldehyde groups of sugars and the amino groups of proteins, which
called Maillard reaction that, have been concerned in aging and
diabetes-related pathological complications [23]. These reactions can
be triggered by glucose-6-phosphate, glyceraldehyde-3-phosphate,
glyoxal (GO), methylglyoxal (MGO) and 3-deoxyglucosone (3DG)
[24]. AGE and RAGE have been associated in cancer development
[25]. AGEs binding to RAGE induces signalling pathways of mitogen-
activated protein kinases (MAPKs) [26], cdc42/rac and Jak/STAT [22],
which modulate the of some genes as the vascular endothelial growth
factor (VEGF) [27]. AGE-RAGE activation increases transforming
growth factor beta-1 (TGF-β1) levels, with enhanced activity of matrix
metalloproteinase 2 (MMP-2); on the other hand, RAGE signalling
promotes MMP-9 activity. MMP-2 and -9 induce modifications in
collagen IV turnover [28]. AGEs have been shown to induce
inflammation and intracellular reactive oxygen species (ROS), which
leads to the expression of many atherosclerosis-related genes, including
VEGF [29].
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HMGB1 protein is a DNA-binding nuclear protein, released actively
in response to cytokine stimulation, or passively during cell death [30],
and it is present in almost all eukaryotic cells [31]. HMGB1 can
activate a series of signalling components, including MAPKs and AKT,
which play an important role in tumor growth through binding to
RAGE and hastens cell-cycle progression [32]. In vitro studies with
pancreatic cancer cells revealed that the targeted knockout or
inhibition of HMGB1 and RAGE could increase apoptosis and defeat
pancreatic cancer cell growth [33]. This phenomenon has been also
noticed with other types of cancer cells [34].

S100 proteins are expressed in vertebrates, and exhibit somewhat
cell-specific distribution [35]. S100P is a 95-amino acid member of the
S100 family of protein, purified and characterized from placenta [36].
The term “S100” was coined to indicate a group of proteins soluble in a
100% saturated ammonium sulphate solution [37]. The designation
“P” was coined to indicate that it was purified firstly from placenta
[36]. S100P is a member of the large family of S100 calcium-binding
proteins [38]. Expression of S100P was observed to be specific to
pancreatic cancer cells [39]. The specificity for cancer cells was further
confirmed in micro-dissected pancreatic cancer tissues and isolated
primary cultures of cancer cells [40].

RAGE and Cancer
RAGE has been overexpressed in the brain, breast, colon, colorectal,

lung, prostate, oral squamous cell, and ovarian cancers, in addition to
lymphoma and melanoma [41] this clarifies the direct relationship
between RAGE and cancer cell proliferation, survival, migration, and
invasion of tumor cells [42]. Targeted knockdown of RAGE in the
tumor cell, leads to increased apoptosis. In contrast, overexpression of
RAGE is associated with enhanced autophagy and stop apoptosis [33].
The HMGB1-RAGE axis blockage suppressed tumor growth and
explores the in vivo role of RAGE during cancer development [43].
RAGE and its ligand, S100P have been shown to mediate tumor
growth, drug resistance, and metastasis [44]. RAGE activation has
been considered to promote tumor vasculature, tumor growth and
invasion [45] by induction of ROS, extracellular signal-regulated
protein kinase (ERK1/2), p38MAPKs, phosphoinositol-J kinase, Janus
kinase/signal transducer and activator of transcription pathway,
nuclear factor kappa B (NF-κB), activator protein-1 (AP-1) and
activator of transcription 3 (STAT-3) [22,46,47].

Interaction of full-length RAGE with its ligands, including AGEs,
S100 protein family, and HMGB1, triggers the rapid activation of an
array of key cell signalling pathways culminating in the activation of
the NF-κB pathway [48]. NFκB is a transcription factor for a large
group of genes which are involved in several different pathways. For
instance, NFκB activates its own inhibitor (IκB) as well as groups of
pro-apoptotic and anti-apoptotic genes [49]. Among the latter, NFκB
activates transcription of a gene encoding for the inhibitor of apoptosis
protein (IAP). This protein, in turn, contributes to downregulate the
activity of the caspase cascade [50]. NF-κB is retained inert in the
cytoplasm by the inhibitor protein, I-kappaB (IκB) [51]. Following
stimulation of the cell by a variety of agents, IκB is degraded, allowing
NF-κB to translocate to the nucleus and bind to the promoter regions
of its multiple target genes to promote cell survival and proliferation
[52].

RAGE and Pancreatic Cancer
RAGE has a crucial role in pancreatic cancer development [53,54].

PDA is a wasteful disease with low survival rates [55]. Loss of RAGE
function inhibited the development of PDA in mouse models [3]. The
immunohistochemical analysis confirmed the expression of RAGE and
its ligands S100P, S100A4, and HMGB-1 in human PDA [56]. RAGE
and S100 protein play important roles in the progression of PDA [55].
Indeed, S100 proteins interact with RAGE, which play a role in the
degradation of the extracellular matrix facilitating the metastasis of
pancreatic cancer [57]. AGE and RAGE are expressed in many tissues
and cell types [58].

Induction of S phase
S100P expressed in more than 90% of pancreatic tumors, leading to

tumor growth and invasion [59] as in Panc-1 and Mpanc96 cells [60]
in which the increased S100P levels increased the growth of tumors in
mice with subcutaneous-implanted Panc-1 cells. FACS analysis
indicated an over 80% increase in the number of cells in S-phase cells
in Panc-1 cells expressing S100P that interact with RAGE promoting
Panc-1 cell migration and invasion [61]. This role of RAGE in
pancreatic carcinogenesis was evidenced by incubation of wild-type
BxPC3 cells with the anti-RAGE antibodies that inhibited the cell
growth, migration, and invasion [43].

Induction of angiogenesis and metastasis
S100A4 synergize with VEGF, via the RAGE receptor, in promoting

endothelial cell migration by increasing kinase insert domain receptor
(KDR) expression and MMP-9 activity [62]. The expression of MMPs
correlates with the extracellular matrix degradation and tumor
metastasis [63]. The expression of MMP-9 is associated with metastasis
of many human cancers because they play an important role in the
degradation of type IV collagen, which is a major component of the
basement membrane [64]. Therefore, MMP-9 may be involved in the
process of cancer metastasis [65]. Meanwhile, VEGF is a signal protein
produced by cells that stimulate vasculogenesis and angiogenesis that
function as oxygen supply to tissues [66]. The role of angiogenesis in
supporting tumor growth and metastasis [67].

AGE ligand–receptor interactions could play an active part in the
progression of human pancreatic cancer cells (Mia PaCa-2) through
the induction of autocrine platelet-derived growth factor-B (PDGF-B)
[68]. Additionally, RAGE binds to oncogenic KRAS facilitates hypoxia-
inducible factor-1 (HIF1α) activation and promotes pancreatic tumor
growth [69]. HIF-1 potentiates the expression of proteins that promote
angiogenesis and cell survival [70]. HIF1α is a transcription factor
induced by low oxygen conditions and involved in the activation
cancer cell angiogenesis and metastasis [71]. Increased HIF-1 activity
promotes tumor progression, and inhibition of HIF-1 could represent a
novel approach to cancer therapy [72].

Counteract the ROS-induced oxidative stress
Activation of RAGE by S100P stimulates several cellular signalling

pathways, including MAP kinase and NFκB [44] inhibiting S100P-
RAGE interactions significantly reduce basal levels of NFκB activity in
PDA [59]. Excessive ROS production can lead to oxidation of
macromolecules and has been implicated in mitochondrial DNA
(mtDNA) mutations, aging, and cell death. Mitochondrial generated
ROS play an important role in the release of proapoptotic proteins,
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which can trigger caspase activation and apoptosis [73]. Exposure of
pancreatic tumor cells to H2O2 provoked a nuclear factor kappa B
(NF-κB)-dependent increase in RAGE expression [74] that decreases
ROS-induced oxidative injury [20].

Mitochondrial ATP production
Tumor cells have increased energy requirements. ATP production

occurs through glycolysis and oxidative phosphorylation within
mitochondria. The STAT3 has a role in mitochondrial function,
regulating complex I activation and ATP production [75], promoting
the oncogenic property of Ras-mediated cellular transformation [76].
RAGE expression appears to enhance the cancer cell survival that
depends on autophagy, autocrine IL-6 production, and IL-6–promoted
mitochondrial STAT3 phosphorylation and localization, which in turn
promotes enhanced ATP production in pancreatic cancer cells [1].

RAGE and HMGB1 coordinately enhanced tumor cell
mitochondrial complex I activity, ATP production that promote tumor
cell proliferation and migration. Lack of RAGE or inhibition of
HMGB1 diminished ATP production and slowed tumor growth in
vitro and in vivo [69]. The role of HMGB1 in pancreatic tumor
survival might involve alterations in tumor bioenergetics [69]. RAGE-
mediated autophagy is required for IL-6-induced mitochondrial
translocation of STAT3 and subsequently, IL-6/STAT3-mediated ATP
production [1]. There are at least two different mechanisms involved in
RAGE-mediated ATP production: mitRAGE dependent and RAGE-
mediated autophagy dependent [69].

Down-regulation of apoptotic molecules
RAGE knockdown was associated with increased apoptosis that

reversed in part by treatment with pan-caspase inhibitors [33]. In cells
treated with a pharmacologic inhibitor of p53, pifithrin α, and p53
knock out tumor cell lines we observed abrogation of the increased cell
death observed with RAGE knockdown [77].

Conclusion
From this review, we can conclude that RAGE and its ligands have

the crucial role in pancreatic carcinogenesis through up-regulation of
some anti-apoptotic molecules. Besides, more studies have been in
need to understand the mechanisms by which RAGE induces the
pancreatic cancer development and survival by further studies to know
the relationship between RAGE and other anti-apoptotic and apoptotic
molecules by molecular and proteomic tool through:

Study the relationship between RAGE and apoptotic molecules such
as p53, p21, caspases and BAX.

Study the relationship between RAGE and anti-apoptotic molecules
like Akt, BCL2, PARP and inhibitors of apoptosis proteins.

Drug discovery of new novel anti-RAGE agents.
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