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ABSTRACT
It is estimated that 80% of SARS-CoV-2 patients have olfactory disturbances and many also have dysgeusia or ageusia

(an interruption or loss of taste, respectively) or changes in chemesthesis, the ability to perceive irritants by TRP

receptors. Anosmia (loss of sense of smell) and dysgeusia been termed 'sentinel symptoms'. Anosmia and ageusia

represent a real health risk and can also cause nutritional deficits'. Infection with SARS-CoV-2 in the oral cavity

could cause changes in the production or quality of saliva, contributing to the symptoms of taste loss. Since the

activation of TRPs by Reactive Oxygen Species (ROS) contributes to inflammation and pain, research is focusing on

several biological mediators related to TRPs and oxidative radicals that could help the development of treatments for

pain itself and some COVID related symptoms.

Recent studies have found that Nuclear Factor Erythroid-Related Factor 2 (NRF2) is a transcription factor that

regulates cellular defence against toxic and oxidative insults. Compounds that can activate or induce NRF2 include

garlic H2S polysulphides, cinnaldehyde in cinnamon, polyphenols in green tea, curcumin, a polyphenolic compound

found in curcuma, piperine, an alkaloid found in black pepper, and glucoraphanin found in broccoli.

In addition, there is a substantial electrophilic interaction between NRF2, TRPA1 and TPV1 that results in their

desensitisation. TRPV1 receptors enter a refractory state (commonly called desensitisation) that leads to inhibition of

receptor function as repeated stimulation leads to a progressive reduction in their response. To counteract some of

the effects induced by SARS-CoV-2, a rapid desensitisation of TRPs by certain foods is therefore proposed which

could reduce the severity of symptoms (including cough, loss of taste and smell) and provide new therapeutic

strategies.
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INTRODUCTION

It is estimated that 80% of SARS-CoV-2 patients have olfactory
disturbances and many also have dysgeusia or ageusia (an
interruption or loss of taste, respectively) or changes in
chemesthesis, the ability to perceive irritants [1-6]. Anosmia (loss
of sense of smell) and dysgeusia have been reported as symptoms
that seem to have a particular tendency to precede the onset of
respiratory symptoms. They have therefore been termed 'sentinel
symptoms'. A recent observational study including more than
two million participants has revealed that loss of smell and taste

is more predictive than all other symptoms, including fatigue,
fever or cough [7].These symptoms may serve as a useful
additional screening criterion, particularly for identifying
patients in the early stages of infection [8].

BUT WHAT ARE THE PHYSIOPATHOLOGICAL MECHANISMS
UNDERLYING THESE CHANGES?

It should be noted that the main mechanisms proposed for acute
changes induced by other viruses in the olfactory region include
conductive deficits caused by loss of patency due to mucosal
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swelling and increased mucus production, changes in mucus
composition, and secondary changes in olfactory signaling
caused by local release of inflammatory intermediates such as
cytokines [9-15].

However, the natural history of COVID-19 associated anosmia
supports that SARS-CoV-2 attacks the olfactory system by
mechanisms distinct from those used by more benign endemic
coronaviruses and does not usually cause nasal congestion. It
seems that the virus mainly attacks support cells and stem cells
and not directly 'olfactory neurons', but this does not mean that
the neurons cannot be affected. Olfactory neurons do not have
Angiotensin-Converting Enzyme 2 (ACE2) receptors, which
allow the virus to enter cells, on their surface. But the
sustentacular cells, which support the olfactory neurons in an
important way, are studded with them. These cells maintain the
delicate salt water balance of the ions present in the mucus and
allow neurons to discriminate signals and send them to the
brain.

If this equilibrium is disrupted there is a shutdown of neuronal
signaling and thus of the sense of smell. The sustentacular cells
also provide the metabolic and physical support necessary to
sustain the cilia (finger-like) at the ends of the olfactory neurons
where the odour-sensing receptors are concentrated [16,17]. "If
you physically interrupt those cilia, you lose the ability to
discriminate odours". With regard to the alteration of taste
perception, the researchers focused their attention on receptor
cells.

There are two types of transmembrane receptors relevant to
taste:

G-Protein-Coupled Receptors (GPCRs), which mediate sweet,
umami and bitter tastes, [18,19] and ion channels, which
mediate sour (H+) and salty (Na+) tastes. Researchers have
observed that compared to other oral tissues, the salivary gland
cells of the tongue and tonsils have the Angiotensin-Converting
Enzyme 2 (ACE2) receptor (to which the virus binds) and the
enzyme TMPRSS that allows the virus to fuse its membrane with
that of the host cell and slip inside. Therefore it would appear
that infection with SARS-CoV-2 in the oral cavity could cause
changes in the production or quality of saliva, contributing to
the symptoms of taste loss [20]. But within the taste buds and in
the epithelial cells of the tongue and mouth, the presence of
TRP receptors sensitive to various chemicals such as capsaicin,
allicin, gingerol, alcohol and changes in acidity (H+) has also
been detected [21,22] and they too decrease their discriminatory
activity in relation to changes induced in the microenvironment
by COVID19 (through an oxidative storm). Anosmia and
ageusia represent a real health risk and can also cause
nutritional deficits'. But the role of TRP channels in the
transmission of sensory stimuli is not limited to taste. They are
also involved in the transduction of painful stimuli, and both
(taste and painful stimuli) are essential for survival and health.

WHERE IS THE TRPS LOCATED?

TRP channels (example-TRPA1, TRPM and TRPV) are found in
nerve endings, dorsal root ganglia and taste buds and play an
essential role in pain perception and taste perception [23,24].

They are also widely expressed in small diameter sensory fibers
(C and A δ fibers) but are also present in the central nervous
system and other physiological membranes of many tissues
[25,26]. TRP receptors have also been observed to play a crucial
role in complex pulmonary pathophysiological events, including
increased intracellular calcium levels, recruitment of
proinflammatory cells, neurogenic inflammatory pathways,
cough reflex, mucus clearance, and disruption of epithelial
integrity, pulmonary oedema and fibrosis [27]. Activation of
TRPV1 increases the release of several pro-inflammatory
molecules, including substance P (sP) and cytokines such as
IL-6. Respiratory pathophysiology in COVID-19 cases may show
mechanisms related to TRPV1 receptor sensitization resulting in
hyper inflammation of the lungs and associated complications
[28].

Recent studies have observed that TRPA1 and TRPV1 receptors
are co-expressed in C-fiber pulmonary vagal sensory nerves are
self-regulating and are sensitive during oxidative processes to
Reactive Oxygen Species (ROS) [29]; a common denominator in
all conditions associated with COVID-19 appears to be a storm
of cytokines associated with strong oxidative stress. In particular,
when TRPA1s are activated by Reactive Oxygen Species (ROS)
they can increase sensory or vagal nerve discharges to evoke pain
and several symptoms of COVID-19 including cough, vomiting
and diarrhea [30,31]. Since the activation of TRPs by Reactive
Oxygen Species (ROS) contributes to inflammation and pain,
research is focusing on several biological mediators related to
TRPs and oxidative radicals that could help the development of
treatments for pain itself and some COVID-related symptoms.
Recent studies have found that Nuclear Factor Erythroid-
Related Factor 2 (NRF2) is a transcription factor that regulates
cellular defence against toxic and oxidative insults through the
expression of genes involved in the oxidative stress response in
inflammatory processes and makes cells resistant to chemical
carcinogens [32].

BUT WHICH COMPOUNDS HAVE THIS PROPERTY?

Many foods have antioxidant properties and several mechanisms
are involved. Compounds that can activate or induce NRF2
include garlic H2S polysulphides, cinnaldehyde in cinnamon,
polyphenols in green tea, curcumin, a polyphenolic compound
found in curcuma, piperine, an alkaloid found in black pepper,
and glucoraphanin found in broccoli [33-35]. In addition, there
is a substantial electrophilic interaction between NRF2 and
TRPA1 and TPV1 that results in their desensitisation. TRPV1
receptors enter a refractory state (commonly called
desensitisation) that leads to inhibition of receptor function as
repeated stimulation leads to a progressive reduction in their
response. To counteract some of the effects induced by SARS-
CoV-2, a rapid desensitisation of TRPs by certain foods is
therefore proposed which could reduce the severity of symptoms
(including cough, loss of taste and smell) and provide new
therapeutic strategies. Glucoraphanin has been tested [33] in
several clinical trials of COVID 19 with repeated dosing (every
6-8 hours) and a reduction in symptom severity was observed.
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CONCLUSION

However, the efficacy and safety of these preliminary data will
need to be confirmed by further studies, which will allow us to
identify the bioavailability of the active ingredients in a wide
range of foods effective in reducing COVID-19 symptoms. We
therefore believe that this promising research will be of great
importance in providing new therapeutic strategies that will be
very effective forms of defence against viral infections.
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