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Abstract

Malaria has continued to be a major cause of morbidity and mortality in the Tropical World. Research on its
complex immunology has focused more on the host adaptive immunity to the plasmodium parasite. The role of
innate immune mechanisms involving myeloid cells has not been given adequate attention. This review highlights
the key role of myeloid cells in immunity to malaria through such mechanisms as parasite sensing and elimination,
pro inflammatory activities and activation of other immune components.
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Introduction
Advances in immunology research have given some insight into the

nature and functions of myeloid cells. Most of this information majorly
concerns the role of these cells in the promotion of tumor and other
cancers as well as in enhancing pathogenicity of infectious disease
agents. However, due to the cellular complexity of the innate immune
system, the contribution of these cells in immunity against malaria has
remained elusive.

Malaria remains the most important infectious disease in the
tropical World where it is responsible for 198 million cases and 584,000
deaths [1]. Plasmodium falciparum is the parasite responsible for the
majority of morbidity and mortality due to malaria. This parasite is
transmitted by the female anopheles mosquitoes in regions where it
breeds in favourable climatic conditions. The human acquires
infections through injection of sporozoites during a blood meal by the
female anopheles mosquito. These sporozoites replicate in the
hepatocytes and are released as merozoites into the circulation where
they multiply within the erythocytes. While the parasite multiplies, the
human body tries to exert some immune reaction to the invading
parasite. Human immunity to malaria is a complex system. However it
is thought that partial immunity is developed over years of exposure
especially among adults, and while it never provides complete
protection, the risk of progression to severe disease is reduced. This the
possible reason why most malaria deaths in high transmission areas
such as Sub Saharan Africa occur mainly in young children while in
low transmission areas accompanied with low immunity, it is usually
across all age groups [1,2].

Several studies have focused on the pattern and dynamics of human
immunological reactions to the malaria parasite with the aim of
finding a suitable target for a sustainable vaccine against the disease.
The parasite genome has also evolved to maximise the array of
immunogenic proteins to its advantage especially through its ability to
produce several antigenic variants [3]. Continuous evaluation of all

aspects of the human immune system as regards the malaria parasite is
very important towards finding an effective target for a sustainable
malaria vaccine as well as for therapeutic purposes.

Apart from the malaria parasites, the environment contains so many
other potentially infectious agents which can cause a lot of damage if
they multiply unchecked. However most times the immune system
ensures that most of these infectious agents are of limited duration in
the human body and that they do not cause very permanent damage.
The immune system is made up of different types of cells including
developed from pluripotent stem cells of the bone which include tissue
cells and white blood cells or leucocytes. Two pathways are responsible
for the production of leucocytes; (1). The lymphoid lineage producing
the T lymphocytes, B lymphocyte and the Natural killer cells (2). The
Myeloid pathway producing the Mononuclear phagocytes, Monocytes
and Macrophages, Neutrophils, Eosinophils, Basophils, Mast cells and
Dendritic Cells. These cells are collectively called myeloid cells.

Myeloid cells are very important elements of the innate immune
system because of their roles in inflammatory response as well as in
sensing and eliminating invading parasites [4,5]. Most studies on
immunity to malaria have focused on the adaptive immune system.
The importance of myeloid cells as agents of tumor promotion has also
been widely reported [6-10]. In this paper however, we focus on the
role of some myeloid cells in immunity to malaria.

Malaria Pathogenesis
Malaria causes disease through a number of pathways, which

depend to a certain extent on the species. The five plasmodium species
implicated in malaria infections namaely; Plasmodium falciparum, P.
vivax, P. ovale, P. malariae and P. knowlesi are introduced into the
human blood stream through the bite of an infected mosquito. This
infectious stage is known as the “sporozoite”, and they pass first to the
liver, where they undergo an initial stage of replication (called “exo-
erythrocytic replication”), before passing back into the blood and
invading red blood cells (called “erythrocytes”, hence this is the
“erythrocytic” part of the cycle) [11]. The malaria parasites that invade
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red blood cells are known as merozoites, and within the cell they
replicate again, bursting out once they have completed a set number of
divisions. It is this periodic rupturing of the red blood cells that causes
most of the symptoms associated with malaria, as the host’s immune
system responds to the waste products produced by the malaria
parasites and the debris from the destroyed red blood cells [12].

Parasite multiplication in the red blood cells results in all the
pathology of malaria. The primary attack of the disease begins with
headache, fever, anorexia, malaise, and myalgia. This is followed by
paroxysms of chills, fever, and profuse sweating. There may be nausea,
vomiting, and diarrhea. The paroxysms tend to assume a characteristic
periodicity depending on the infecting parasite specie. In P. vivax, P.
ovale and P. falciparum the periodicity is 48 h and for P. malariae the
periodicity is 72 h. The fever actually corresponds to the rupture of the
red cell as merozoites are released from the schizont-infected cell. If
the infection is not synchronous and there are several broods of
parasites the periodicity may occur at 24 h intervals [13]. Anemia is
the most immediate pathologic consequence of parasite multiplication
and destruction of erythrocytes and there can also be suppression of
red cell production in the bone marrow. During the first few weeks of
infection, there is accumulation of parasitized red cells and
proliferation of white cells which result in the spleen becoming swollen
and palpable [14]. At this time it is soft and easily ruptured. The spleen
returns to normal size if the infection is treated but, in chronic
infections the spleen continues to enlarge, becoming hard and
blackened in colour due to the accumulation of malaria pigment,
hemozoin [13].

The clinical manifestations of Plasmodium falciparum infection are
induced by the asexual stages of the parasite that develop inside red
blood cells (RBCs). Because splenic microcirculatory beds filter out
altered RBCs, the spleen can innately clear subpopulations of infected
or uninfected RBC modified during falciparum malaria [14,12]. The
spleen appears more protective against severe manifestations of
malaria in naïve than in immune subjects [14,15]. The spleen-specific
pitting function accounts for a large fraction of parasite clearance in
artemisinin-treated patients [16]. RBC loss contributes to malarial
anemia, a clinical form associated with subacute progression, frequent
splenomegaly, and relatively low parasitemia. Stringent splenic
clearance of ring-infected RBCs and uninfected, but parasite-altered,
RBCs, may altogether exacerbate anemia and reduce the risks of severe
complications associated with high parasite loads, such as cerebral
malaria [17]. The age of the patient directly influences the risk of
severe manifestations too. In addition, the unique pathological features
produced by Plasmodium falciparum are due to its manipulation of the
host’s physiology. It has been observed that when it infects red blood
cells, it makes them stick to the walls of tiny blood vessels deep within
major organs, such as the kidneys, lungs, heart and brain [18,14]. This
is called “sequestration”, and results in reduced blood flow to these
organs, causing the severe clinical symptoms associated with this
infection, such as cerebral malaria. Falciparum infections are more
severe and when untreated can result in a death rate of 25% in adults.
The complications of the infection are as a result of what has been
called the pathology cascade. Some of them include renal insufficiency,
renal failure, pulmonary edema, neurologic symptoms and severe
hemolytic anemia [19,11]. In the pregnant female falciparum malaria
may result in stillborn, lower than normal birth weight, or abortion.
Non-immunes and children may develop cerebral malaria which is a
consequence of the mechanical blockage of microvessels in the brain,
or organ infarcts, due to sequestration of infected red cells via
protuberances called knobs [20]. If relapse occurs in falciparum

malaria it is due to the increase in numbers of pre-existing erythrocytic
forms, which were too low to be detected microscopically; this type of
relapse is termed recrudescence.

Host Immunity to Malaria
Malaria infection gives rise to host responses which are regulated by

both the innate and adaptive immune system as well as by
environmental factors. Immunity against malaria can therefore be
classified into acquired or adaptive immunity and innate or natural
immunity.

Acquired or adaptive immunity against malaria arises after infection
and the protection it confers depends on the characteristics of the host,
place of stay, number of infections suffered etc. It has been graded as
anti-disease immunity (that protects against clinical disease), anti-
parasite immunity (protects against high parasitemia), and sterilizing
immunity (protects against new infections by maintaining a low-grade,
asymptomatic parasitemia; also called premunition) [21]. An initial
infection with malaria parasites commonly induces clinical illness in a
non-immune individual with very low levels of parasitemia and the
infection may progress to severe disease and death. What is referred to
as anti-disease immunity develops after a couple of more infections.
This causes suppression of clinical symptoms even in the presence of
heavy parasitemia and also reduces the risk of severe disease. Further
infections slowly lead to the development of anti-parasite immunity
those results in very low or undetectable parasitemia. Sterilizing
immunity, though never fully achieved, results in a high degree of
immune responsiveness, low levels of parasitemia, and an
asymptomatic carrier status. Premunition suggests an immunity
mediated directly by the presence of the parasites themselves and not
as much the result of previous infections [22,23].

The host mounts specific immune response in the presence of
genetically and antigenically distinct strains of the parasites in a given
locality and the occurrence of clonal antigenic variation during the
course of an infection [21]. In this case, the acquisition of immunity
against malaria is, therefore, very slow and not very effective and
remains species specific and strain specific. However, in areas with
stable endemic malaria and intense malaria transmission, such as sub-
Saharan Africa acquired immunity develops at a very early age [24-26].
In these areas, children born to immune mothers are protected against
disease during their first half year of life by maternal antibodies. This
passive immunity is followed by 1 or 2 years of increased susceptibility
before acquisition of active immunity. On the other hand, people living
in unstable endemic areas tend to acquire only partial immunity
[22,23,27,28]. Thus, the level of antimalaria immunity influences the
clinical outcome of the disease in different locations and age groups.

The underlying mechanisms and antigenic specificity of protective
immunity against malaria are the focus of several studies. The acquired
anti malaria immunity has been demonstrated to be strain specific and
stage specific, with cross reactivity [29]. Immune response has been
documented against the various parasite antigens in pre-erythrocytic
(sporozoite), asexual erythrocytic (merozoite) and sexual stages
(gametocyte) [23]. Natural exposure to sporozoites does not guarantee
complete antiparasite and antidisease immunity but only limit the
density of parasitemia and decrease the malaria-associated morbidity
and mortality. The acquired immunity is directed predominantly
against the asexual erythrocytic stage, the primary targets being the
extracellular merozoites in circulation. Although the preerythrocytic
stage is also targeted by protective immune responses, it does not
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effectively block sporozoite invasion or intrahepatic development of
the parasite [22,23].

The acquired anti malaria immunity is typically not long lasting. In
the absence of re-infection over a period of time, for instance when the
person leaves a malarious area for some time, the acquired immunity
becomes ineffective and the individual is once again vulnerable to the
full impact of a malarial infection. The immunity is also rendered less
effective during pregnancy, particularly during the first and second
pregnancies, due to the physiological immunosupression as well as the
cytoadherence of erythrocytes to the newly available Chondroitin
Sulfate A receptors on the placenta. Such loss of acquired immunity
makes the pregnant woman more susceptible to malaria and its
complications [22,23]. Immunosuppression such as in HIV/AIDS also
increases the risks of clinical malaria, its complications and death [30].

Innate or natural immunity to malaria is an inherent proactive
system of the host that prevents the establishment of the infection or
an immediate inhibitory response against the introduction of the
parasite. The innate immunity is naturally present in the host and does
not depend on any previous infection. Alterations in the structure of
hemoglobin or in certain enzymes have been found to confer
protection against either the infection or its severe manifestations [22].
These traits are often found in areas of high malaria transmission.
Certain thalassemias (50% reduction in infection), homozygote
hemoglobin C (90% reduction), hemoglobin E, and ovalocytosis
carrier status have been reported to confer protection against P.
falciparum or P. vivax. Glucose 6 phosphate dehydrogenase deficiency
(50% protection) and sickle cell hemoglobin (90% protection) confer
protection against severe malaria and related mortality [22,23].

Acute malarial infection also induces immediate, non-specific
immune response that tends to limit the progression of disease. Even
though the mechanisms of this non-specific defence are poorly
defined, the myeloid cells appear to play very important roles in this
respect. Related cell types probably playing a role in innate malaria
immunity are the Natural Killer T cells (NKT cells) which in mice
carry both the NK1.1 surface marker and T-cell receptors (TCR) [31].
NK cells in peripheral blood produce Interferon-gamma in response to
Plasmodium infected erythrocytes, leading to activation of myeloid
cells such as the parasiticidal macrophage [2], and this may be of
greater importance for innate malaria immunity than their potential to
lyse infected host erythrocytes. These cells are also important in the
initiation and development of adaptive immune responses. Other
myeloid cells such as the dendritic cells also sense the presence of the
parasite and participate in the immune response. Malaria infection
gives rise to strongly elevated blood concentrations of non-malaria-
specific immunoglobulin, but understanding of importance of the
underlying activation and functions of these cells in innate immunity
remains insignificant [31-34].

Myeloid Cells Involved In Immunity to Malaria
Myeloid cells are differentiated descendants from common

progenitors derived from hematopoietic stem cells in the bone marrow.
Commitment to either lineage of myeloid cells is controlled by distinct
transcription factors followed by terminal differentiation in response
to specific colony-stimulating factors and release into the circulation
[5]. Upon pathogen invasion, myeloid cells are rapidly recruited into
local tissues via various chemokine receptors, where they are activated
for phagocytosis as well as secretion of inflammatory cytokines,
thereby playing major roles in innate immunity.

Some of the myeloid cells that play these very important roles in
innate immunity to malaria include eosinophils, macrophages and
dendritic cells.

Eosinophils
Eosinophils or ‘eosinophilic granulocytes’ are multifunctional cells

which comprise about 1-5% of peripheral-blood leucocytes in a
normal person. They are terminally differentiated cells which are
constitutively released from the bone marrow where they are produced
[35] and may remain in circulation for several days under normal
physiological conditions [36]. Eosinophil counts in the blood or tissue
are strictly regulated however, in certain disease conditions,
eosinophils may selectively accumulate in the peripheral blood or any
tissue in the body resulting in eosinophilia with accompanied
profound clinical effects [37]. Eosinophils are recruited to sites of
inflammation in response to stimuli such as IL-5 and eotaxin family of
chemokines [38] where they participate in diverse immune response
mechanisms. Activated eosinophils secrete various molecules
including the proinflammatory cytokines like IL-2, IL-4, IL-5,IL-10,
IL-12, IL-13, IL-16, IL-18, and TGF -α/β, the chemokines (RANTES
and eotaxin-1) and lipid mediators such as platelet-activating
factor(PAF) and leukotriene C4 (LTC4) [39].

In addition, eosinophils have granules which contain highly potent
cytotoxic cationic proteins [major basic protein (MBP), eosinophil
cationic protein (ECP), eosinophil peroxidase (EPO), and eosinophil
derived neurotoxin/eosinophil protein X (EDN/EPX)] capableof
inducing tissue damage and dysfunction [40]. These granule proteins
are the major components responsible for eosinophil mediated
pathological processes. The involvement of eosinophils in the
pathogenesis of inflammatory processes such as parasitic helminth
infections and allergic diseases has been extensively studied [37,41].
However, although not as well studied, accumulating evidence suggest
eosinophils may function as ‘double-edged’ swords in P. falciparum
infection by contributing both to in vivo parasite clearance and severe
malaria pathogenesis, particularly cerebral malaria [42]. Eosinophilia
is a hallmark of helminth infection and it has been suggested that
concomitant infection in malaria patients may contribute to decreasing
disease severity [43]. Eosinophil secretory products were 35 found to
be highly toxic to late stage intra erythrocytic P. falciparum parasites
with ECP being a significant mediator [44], suggesting a positive
contribution of eosinophils in controlling malaria infection.

Macrophages
Mature macrophages are derived from monocytes, granulocytes,

stem cells, or the cell division of pre-existing macrophages.
Macrophages do not have granules, but contain many lysosomes. They
are found throughout the body in almost all tissues and organs. The
importance of macrophages in the clearance of iRBC and control of
parasitemia has been shown in experiments with lethal and non-lethal
strains of P. yoelii, where depletion of monocytes/macrophages
exacerbated parasite growth and anemia [45]. Macrophages can
phagocytose iRBCs through two different mechanisms. One
mechanism does not require opsonizing antibodies; upon activation
mediated by inflammatory cytokines such as TNF and IFN-γ,
macrophages can bind to parasite antigens expressed on iRBCs via
receptors on their surface [46]. In particular, in human malaria
binding of the scavenger receptor CD36 to the P. falciparum
erythrocytes membrane protein-1 (PfEMP-1) seems to be involved in
this mechanism [47]. In the P. chabaudi murine model, CD36 is also
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believed to mediate non-opsonin dependent phagocytosis [48]. This
mechanism may be important during early infection; however
macrophages are also important for parasite clearance during adaptive
immunity, when the second mechanism, the antibody-dependent
phagocytosis, becomes prevalent. Indeed, in rodent models immune
animals showed a more efficient clearance of iRBCs compared to non-
immune animals [49]. Beside spleen resident macrophages, in the P.
chabaudi infection model a population of CD11bhighLy6C+ monocytes
arising from the BM has been shown to appear in the spleen and to be
actively involved in control of acute parasitemia [50].

Dendritic cells
Dendritic cells are specialized antigen-presenting cells that have

long outgrowths called dendrites, which help to engulf microbes and
other invaders. DCs play a central role during infection in activating
and orchestrating both innate and adaptive immune responses. This is
largely due to their presence in sites of pathogen entry, their unique
ability to sample, uptake, process and present antigens, as well as their
capacity to integrate and respond to microbial and other immune cells
signals (Figure 1). The presence of a large variety of pattern recognition
receptors on DC surface, like TLRs, which allow them to sense and
interact with various conserved microbial molecules, is central in DC
functions. The evidence that different DC subsets are equipped with
different sensing receptors suggests specialized functions during
various types of infection [51]. These characteristics of DCs make them
an inviting target for malaria immunotherapy. Protective immunity to
blood stage malaria requires high titres of neutralizing antibodies, as
well as malaria specific CD4+ T cells to effectively contain and clear
the parasite [51]. During blood stage malaria, DCs in the marginal
zone of the spleen are ideally placed to sample the blood flowing
through the marginal sinus and, upon activation, they can migrate to
the white pulp were they can initiate acquired immune responses. In
humans, studies by Urban and colleagues showed that monocyte-
derived DCs could interact with P. falciparum iRBCs by binding of
CD36 to PfEMP-1. However, this interaction resulted in inhibition of
DC maturation, thus affecting their ability to stimulate T cells [52,53].
However, a subsequent study showed that this inhibition is dose
dependent and does not require interaction between CD36 and
PfEMP-1 [54]. In vivo studies in mice demonstrated that 6 days after
infection with P. chabaudi DCs were fully functional [55,56],
upregulated co-stimulatory molecules important for activating T cells
such as CD40, CD86 and ICAM-1, and migrated from the marginal
zone to the T cell area in the spleen within 5 days of infection [57].
However, other studies found that upon infection DCs exhibited an
impaired immunostimulatory activity [58-60]. In studies aimed at
understanding the effect of iRBCs on DCs, splenic CD11c+ cDCs were
shown to be more efficient in uptaking iRBCs than RBCs and, in vivo,
iRBCs induced DC maturation, production of IL-12 and IFN-γ, and
CD4+ T cell maturation [61]. In particular, during P. chabaudi
infection both CD8+ and CD8- cDCs could present parasite antigens,
but only CD8- cDCs isolated during acute infection could activate
antigen-specific CD4+ T cell responses [62]. Despite the contrasting
results obtained by different groups, what has become evident is that
the functional capacity of splenic DC subsets changes during infection,
and that the antigen dose plays a part in such a modulation. Indeed,
the amount of antigen is known to affect whether the generated
immune responses are cell-mediated or antibody-mediated [63].
During early malaria infection, low parasite levels activate DCs to
produce TNF-a and IL-12, which stimulate IFN-γ. Production by NK
and naïve CD4+ T cells, and IL-12-associated protection has been

observed as early as 6 days post infection [56,62]. As the infection
progresses and parasitemia increases, DCs produce less IL-12 and,
instead, begin to produce IL-10, but they are still able to activate naïve
CD4+ T cells [64]. During the later phase of infection, the induced,
widespread systemic activation of DCs renders them refractory to TLR
stimulation, thus dampening their ability to phagocytose antigens and
primimg T cells [64]. Apoptosis of CD8+ cDCs is observed at this
phase in P. chabaudi infection, whereas the number of CD8- cDCs
increases in the spleen [62], and IL-4 and IL-10 production by
proliferating CD4+ T cells prevails, which corresponds to a switch
from Th1 to Th2 immune responses. At this stage, protection is
essentially antibody-mediated [65]. As high doses of P. falciparum
iRBCs have been shown to induce apoptosis in monocyte-derived
human DCs, while low doses activate them to stimulate CD4+ T cell
proliferation [54], it has been proposed that CD8+ cDCs, which are the
major producers of IL-12 [66], might be important in early infection,
when parasitemia is low, to activate Th1 responses, whereas CD8-
cDCs could have a major role during the acute phase to promote the
switch from Th1 to Th2 immune responses [67].

Figure 1: A Model for the development of clinical immunity to P.
falciparum malaria, dependent on age at first exposure.

Conclusion
Myeloid cells play critical roles in the development of malaria

pathogenesis and protective immunity development. A deeper
understanding of the molecular interactions by which these cells
respond immunologically to malaria parasites and how these immune
responses are regulated is crucial to identify targets for the
development of immunomodulatory therapeutics to prevent/treat
severe malaria and/or for enhancing the efficacy of malaria vaccine.
The roles of these cells described in this review include functions in
sensing and clearing parasites, pro inflammatory agent as well as
intricate interaction with various other components of the immune
system. It is therefore very important that the mechanism and
dynamics of myeloid cells in conferring innate immunity to malaria be
given more attention. This is because they may have useful
implications for novel therapeutic design and advice as well as offer
effective targets for malaria vaccine.
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