
Volume 8 • Issue 6 • 1000741
J Nutr Food Sci, an open access journal
ISSN: 2155-9600

Open AccessReview Article

Stödter et al., J Nutr Food Sci 2018, 8:6
DOI: 10.4172/2155-9600.1000741Journal of Nutrition & Food Sciences

Jo
ur

na
l o

f N
utrition & Food Sciences

ISSN: 2155-9600

The Role of Metabolism and Nutrition Therapy in Burn Patients
Stödter M1*, Borrelli MR2, Maan ZN2, Rein S3, Chelliah MP2, Sheckter CC2, Duscher D4, Tapking C5,6, Branski LK5, Wallner C7, Behr B7, 
Lehnhardt M7, Siemers F8 and Houschyar KS7

1Institute of Agricultural and Nutrition Sciences, Martin Luther University of Halle-Wittenberg, Germany
2Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
3Department of Plastic and Hand Surgery, Burn Center, Sankt Georg Hospital, Leipzig, Germany
4Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
5Department of Surgery, Shriners Hospital for Children-Galveston, University of Texas Medical Branch, 815 Market Street, Galveston, TX 77550, USA
6Department of Hand, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Germany
7Department of Plastic Surgery and Burn Centre, BG University Hospital Bergmannsheil GmbH, Ruhr University Bochum, Bochum, Germany
8Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Germany

Abstract

Thermal injury elicits the greatest metabolic response, amongst all traumatic events, in critically ill patients. In 
order to ensure burns patients can meet the demands of their increased metabolic rate and energy expenditure, 
adequate nutritional support is essential. Burn injury results in a unique pathophysiology, involving alterations in 
endocrine, inflammatory, metabolic and immune pathways, and nutritional support needed during the inpatient stay 
varies depending on burn severity and idiosyncratic patient physiologic parameters. We review the effects of burn 
injury on nutritional requirements, and how this can be best supported in a healthcare setting.
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Background

Thermal injuries are responsible for generating the greatest 
metabolic response of any disease process in critically ill patients [1]. 
A number of alterations in inflammatory, immune, and endocrine 
pathways are initiated upon injury [2]. Immune cells are stimulated 
to secrete cytokines which can induce an unstable hypercatabolic 
state, which, if left unregulated, may lead to multiple organ failure and 
systematic inflammatory response syndrome [3]. Nutrition practice 
in burn injury requires a multifaceted approach aimed at providing 
metabolic support during a heightened inflammatory state, while 
accommodating surgical and medical needs of the patient. Nutritional 
assessment and determination of nutrient requirements is challenging, 
particularly given the metabolic disarray that frequently accompanies 
inflammation. Nutritional therapy requires careful decision making, 
regarding the safe use of enteral or parenteral nutrition and the 
aggressiveness of nutrient delivery given the severity of the patient’s 
illness and response to treatment. Nutritional support, defined by 
provision of vital and ancillary nutrients to maintain or improve the 
patient’s nutritional status and permit wound healing [4], is essential 
in the management of burns [5]. Treatment protocols are evidence-
based, originating from clinical and laboratory data. Severely burned 
patient have much higher energy requirements due to the magnitude 
and duration of the hyper metabolic response as compared to non-
burned critically ill patients [6]. The optimal dietary parameters, 
including amount, route and composition, are still unknown. The 
following review serves as a guideline for providing nutritional therapy 
to severely burned patients throughout their care. 

Methods

PubMed, Embase and Web of Science databases were used to 
search for articles regarding nutrition and/or metabolism following 
burn injury. Articles published in English or German language were 
considered to be included in this review. There were no limitations 
regarding the year of publication.

Changes in metabolism and body composition following 
severe burn injury

Metabolic derangements secondary to major burn injuries are 
difficult to management [7]. Immediately after severe burn injury, 
plasma volume is depleted and insulin levels, lowered oxygen 
consumption, hypothermia and a decrease in overall metabolic rate [8]. 
This “ebb” phase is followed by an evolving “flow” phase [9] in weeks 
following injury. Enhanced secretion of catecholamines, glucagon, 
glucocorticoids, and dopamine are closely associated with the acute 
hypermetabolic response and the associated catabolic metabolism [10], 
resulting in tachycardia, hyperthermia, increased caloric consumption, 
proteolysis and neoglycogenesis [11]. Hyper-metabolism, which 
starts approximately on the fifth post-burn day and persists for up 
to twenty-four months [12]. Basal metabolic rate (BMR) can double 
and result in extreme loss of lean body mass [1]. Inability to meet 
the body’s energy and protein demands can lead to impaired wound 
healing, inability to fight infection, organ dysfunction, and ultimately 
death [13]. The pathophysiology behind this response remains elusive, 
but involves a number of immune modulators including cytokines, 
platelet-activating factor, endotoxin, reactive oxygen species, nitric 
oxide, and complement cascade [14]. Additionally, acutely burned 
patients have increased intestinal permeability [15] and secondary 
immunodeficiency [16], making them more susceptible to secondary 
infections.
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Several studies, especially in pediatric patients, reported changes of 
body composition following burn injury [17-20]. The most common 
way to assess body composition in this and other patient populations 
is dual X-ray absorptiometry (DEXA). Cambiaso et al. reported a 
significant loss of lean mass in pediatric patients during their ICU stay, 
especially in the upper extremities. Furthermore, an increase of fat mass 
was notices [17]. In long-term observations of pediatric burn patients, 
a progressive increase of lean mass was reported up to 36 months post-
injury compared to discharge [18]. Furthermore, an impact of severe 
burn injury on the structure of bones with a decrease of bone mineral 
content and bone mineral density can be seen [20].

Timing of nutritional support of the severely burned patient

Enteral nutrition (EN) is first advocated in the management of 
burns patients, however, the optimal form and chronology of nutrition 
is debated [21]. The American Burn Association practice guidelines 
state that EN should begin as soon as possible, there is no consensus 
among experts regarding the best time to initiate oral/enteral nutrition 
[22]. Most advocate initiating EN within 24 hours of injury [23], and 
research indicates starting EN 6 hours post injury is safe, effective, 
and can reverse the detrimental metabolic and hormonal shifts [7]. In 
human studies early EN can preserve blood levels of catecholamine’s, 
cortisol, and glucagon and consequently preserve the intestinal mucosal 
integrity, as well as its motility, and blood flow [24-26]. 

In the acute post burn phase, patients experience a state of 
hemodynamic instability which inhibits intestinal motility and can 
an trigger paralytic ileus, further contributing to impaired nutrition 
[27]. If some gastrointestinal function remains, EN is preferred over 
parenteral nutrition (PEN), with guidelines promoting the use of ED 
as soon as possible after resuscitation [22]. EN stimulates and directly 
nourishes the gastrointestinal tract and promotes release of intestinal 
hormones and growth factors [28]. In humans, EN can help preserve 
muscle mass and wound healing, and decrease time patients spend in 
intensive care [21]. Early EN dampens the hyper metabolic state and 
can reduce the occurrence of paralytic ileus [1]. It is advised that EN 
is initiated at a continuous low flow rate which is gradually increased 
to the goal volume at a rate tolerated by each patient [27]. Continuous 
EN is preferred over parenteral schedules, though data are limited and 
there is no conclusive evidence supporting the superiority of either 
schedule [7]. In the setting of prolonged ileus or intolerance of EN 
[12], however, PEN becomes necessary. Interestingly, reduced immune 
response, impairment of liver function, and increased mortality 
were observed when combining both enteral and parenteral feeding 
compared to enteral feeding alone [29].

Nutritional evaluation and energy requirements

Nutritional support post burn injury aims to supply additional 
calories required by patients in their hyper metabolic state while 
balancing the risk of overfeeding [7]. Without adequate nutrition 
patients are at risk of impaired immune function, delayed wound 
healing, increased risk of infection, prolonged dependency on 
mechanical ventilation, and heightened mortality risk [12]. 
Conversely, overfeeding can cause hyperglycemia, respiratory system 
overload, steatosis and hyperosmolarity [12]. Various equations have 
been developed to estimate nutritional requirements and caloric 
needs in burn patients using biochemical markers, biometrics, and 
anthropometry [30]. Body mass is considered the easiest indicator to 
assess nutritional status [31]. 

Based on the Curreri formula, adult patients should receive about 

25 kcal/kg/day plus 40 kcal/%TBSA/day [6]. The requirement for 
children is 1800 kcal/day plus 2200 kcal/m2 burn/day. Ideally this 
calorific intake should be via EN. The Harris-Benedict, Ireton-Jones, 
Toronto, Schofield and the American Society for Parenteral and Enteral 
Nutrition (ASPEN) have developed formulas to guide nutritional 
support in critically ill and burn patients [32]. The most widely used 
formulas in children are the Harris-Benedict, Mayes, and World Health 
Organization formulas in Table 1. These formulas only act as guides as 
energy expenditure fluctuates after burn, and strictly following these 
formulas can lead to underfeeding during the periods of highest energy 
utilization and overfeeding later during recovery injuries [33]. 

The current gold-standard for measuring energy expenditure 
is indirect calorimetry (IC) [34]. The volume of expired gas and 
the concentrations of oxygen and carbon dioxide in inhalation 
and exhalation are recorded [35]. This enables the carbon dioxide 
production (VCO2) and oxygen consumption (VO2), and therefore 
metabolic rate to be calculated [36]. The respiratory quotient (RQ) is 
the ratio of carbon dioxide produced to oxygen consumed (VCO2/VO2) 
[37], and is used to detect overfeeding or underfeeding. The normal 
metabolism of mixed substrates yields a RQ of 0.75–0.90. Overfeeding, 
characterized by the synthesis of fat from carbohydrate, results in a RQ 
of >1.0, while in unstressed starvation fat is utilized as a major energy 
source and the consequent RQ is under <0.7. 

IC also allows the REE to be calculated using the Harris-Benedict 
equation. Compared to an isocaloric-isoprotein high fat enteral diet, 
a high carbohydrate diet with 82% carbohydrate, 15% protein and 
3% fat, stimulates protein synthesis by increasing endogenous insulin 
production, resulting in improved lean body mass accretion [38]. In 
pediatric burn patients, 1.4 times the REE (in kcal/m2/day) is needed 
to maintain body weight [23]. Few clinicians have access to IC due 
to its high cost and the training required, and IC is therefore mainly 
performed for research.

Requirements of macronutrients

Metabolism of carbohydrates, proteins, and lipids provides energy 
via different pathways [39]. Carbohydrates are needed in abundance 
by burn patients to provide the glucose required for many metabolic 
pathways, promote wound healing, and spare the use of amino acids 
as an alternative fuel source [7,40]. A randomized study of 14 severely 
burned children found that high-carbohydrate diets resulted in 
significantly less muscle protein degradation than high-fat diet [41]. The 
glucose requirement in severely burned patients, however, may exceed 
the amount of glucose that can be safely administered. Severely burned 
patients oxidize glucose at a maximum rate of 7 g/kg/day [1], and un-
metabolized excess glucose can result in hyperglycemia, glycosuria, 
dehydration, respiratory failure, or the conversion of glucose to fat 
[23]. In addition, acute injury can result in hormonal changes which 
lead to insulin resistance. Supplementary insulin can promote wound 
healing and muscle protein synthesis in burns patients [42]. When used 
in combination with in combination with a high-carbohydrate, insulin 
infusion and high-protein diet in severely burned patients improve 
donor site healing, lean body mass, bone mineral density, and decrease 
length of stay [43,44].

Fat, in small quantities, can improve glucose tolerance, reduce the 
volume of total carbohydrates required [40], and prevent essential fatty 
acid deficiency. Fat, however, is recommended only in limited amounts 
[45]. Lipolysis is suppressed as part of the hyper metabolic and catabolic 
response to severe burns, limiting the degree to which lipids can be 
utilized for energy; only 30% of available free fatty acids are degraded, 
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while the remainder undergo re-esterification and accumulate in 
the liver (steatosis). Fats should, therefore, comprise a maximum 
of 30% of non-protein calories, or 1 mg/kg/day of intravenous 
lipids in total parental nutrition (TPN). Various studies have also 
suggested that increased fat intake impairs immune function [46,47]. 
Resultantly, several low-fat enteral formulas have been created [48]. 
The composition of fat in the diet of burn patients is also an important 
consideration. Omega-6 fatty acids (ω-6 FFA’s), like linoleic acid, are 

metabolized through the synthesis of arachidonic acid, a precursor 
of pro-inflammatory cytokines such as Prostaglandin E2. Omega-3 
fatty acids (ω-3 FFA’s), on the other hand, are metabolized without 
generating pro-inflammatory molecules. ω-3 FFA-rich diets in burns 
victims are associated with a reduced incidence of hyperglycemia, 
improved inflammatory response, and improved outcomes in general 
[49]. Resultantly, immune-enhancing diets have a ω6:ω3 ratio closer 
to 1:1, while most enteral formulas have a ratio between 2.5:1 and 6:1. 

Formula Patients Formula

Harris & Benedict Male

Female

Estimated Energy Requirements:
BMR x Activity factor x Injury factor

66 + (13.7 x weight in kg) + (5 x height in cm) - (6.8 x age)
665 + (9.6 x weight in kg) + (1.8 x height in cm) - (4.7 x age)

Activity factor
Confined to bed: 1.2

Minimal ambulation: 1.3
Injury factor

< 20% TBSA: 1.5
20-40% TBSA: 1.6
> 40% TBSA: 1.7

Ireton-Jones

spontaneously breathing

Ventilated-Dependent

Estimated Energy Requirements:
629 – (11 x yrs) + (25 x w) – (609 x O)

1784 – (11 x yrs) + (25 x w) + (244 x S) +( 239 x t) + (804 x B)

Toronto For all patients

Estimated Energy Requirements:
[- 4343 + (10.5 x %TBSA) + (0.23 x kcals) + (0.84 x Harris Benedict) + (114 x T (°C)) - (4.5 x days 

post-burn) ] x Activity Factors
Activity factors non-ventilated:

Confined to bed: 1.2
Minimal ambulation: 1.3

Moderate act, 1.4
Ventilated-Depedent: 1.2

Schofield
(modified)

Men
10-18 years
18-30 years
30-60 years
> 60 years

Women
10-18 years
18-30 years
30-60 years
> 60 years

Estimated Energy Requirements: BMR x Injury factor
(0.074 x w) + 2.754
(0.063 x w) + 2.896
(0.048 x w) + 3.653
(0.049 x w) + 2.459
(0.056 x w) + 2.898
(0.062 x w) + 2.036
(0.034 x w) + 3.538
(0.038 x w) + 2.755

Injury Factors:
< 10% TBSA = 1.2

11-20% TBSA = 1.3
21-30% TBSA = 1.5
31-50% TBSA = 1.8
> 50% TBSA = 2.0

ASPEN For all patients 25 a 35 kcal/kg/day

Mayes

For Children
Male & Female

< 3 years
3 to 10 years

Estimated Energy Requirements:
108 + (68 x weight in kg) + (3.9 x %TBSA)

818 + (37.4 x weight in kg) + (9.3 x %TBSA)

WHO

For Children
Male

< 3 years
3 - 10 years

Female
< 3 years

3 - 10 years

(60.9 x weight in kg) - 54
(22.7 x weight in kg) + 495
(61.0 x weight in kg) - 51

(22.5 x weight in kg) + 499

Galveston

For Children
Male & Female

0 - 1 year
1 - 11 years
12 - 18 years

2100 (BSA) + 1000 (BSA × TBSA)
1800 (BSA) + 1300 (BSA × TBSA) 
1500 (BSA) + 1500(BSA × TBSA)

Kcals: Calorie intake in past 24 hours; Harris Benedict: Casal requirements in calories using the Harris Benedict formula with no stress factors or activity factors; T: Body 
temperature in degree Celsius; Days post burn: The number of days after the burn injury is sustained using the day itself as day zero; W: Weight in kg; TBSA: Total body 
surface area; BSA: Body surface area

Note: Specific formulas developed for critically ill and burn patients include the Harris-Benedict, Ireton-Jones, Toronto, Schofield and the American Society for Parenteral 
and Enteral Nutrition (ASPEN) recommendations [28]. The most widely used formulas in children include the Harris-Benedict, Mayes and World Health Organization 
formulas.

Table 1: Formulas for calculating nutritional needs in burn cases.
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after burn [7]. Supplementing these micronutrients can improvement 
morbidity for severely burned patients.

Pharmacologic modalities
Current methods of nutritional support, although perceived 

to be effective, may fail to replenish all nutritional deficiencies. 
Pharmacological nutrition is the concept whereby nutritional support 
is “tailor made” for the specific disease and/or organ involved and 
involves administration of two to seven times the usual amounts of 
selected normal dietary constituents with reduction of the remaining 
components to avoid overfeeding. Dietary supplementation with 
pharmacological levels of specific amino acids and fatty acids, alone 
or in combination, can improve immunologic function, reduce the 
intensity and number of infections, stimulate the proliferation of ileal 
and colonic mucosa, thereby also improving their barrier functions, 
and maintain muscle anabolism and nitrogen balance. Pharmacological 
nutrition can thus significantly altering the clinical course of critically 
ill patients [16]. According to Häusinger’s hypothesis, pharmacological 
nutrition regulates cell hydration [70]. Among the nutritional 
supplements most frequently used in pharmacological nutrition for 
burn patients are glutamine, arginine and (ω -3) fatty acids [16]. 

Conclusion
Effective assessment and management of nutritional status 

optimizes wound healing and decreases complications and mortality. 
With each change in clinical status, reassessment of nutrient 
requirement is necessary. Early enteral nutrition builds the basis of 
nutritional support, and ideally nutritional support is individualized 
and continually adjusted throughout recovery according to changing 
needs to achieve predetermined nutritional endpoints.
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The ideal composition and amount of fat in nutritional support for 
burn patients warrants further investigation and remains a topic of 
controversy.

Protein supplementation is essential to meet the ongoing demands, 
maintain lean body mass, and to supply a substrate for immune 
function and wound healing. Increased proteolysis is a hallmark of 
the hyper metabolic response to severe burn resulting in degradation 
of a half pound of skeletal muscle per day [50]. Healthy individuals 
require 1 g/kg/day of protein [51], and based on in vivo kinetics 
measuring oxidation rates of essential and non-essential amino acids, 
burn patients are calculated to use 50% more protein per day than 
healthy individuals in the fasting state [6,23,52]. Currently, protein 
requirements are estimated at 1.5-2.0 g/kg/day for burned adults, and 
2.5-4.0  g/kg/day for burned children [53]. Several amino acids are 
essential to recovery following burn injury [54]. Glutamine, alanine, 
and arginine efflux from skeletal muscle and solid organs following a 
burn injury [55], and provide a source of energy for the liver and help 
in wound healing [56,57]. Glutamine helps to maintain the integrity 
of the small bowel and to preserve the immune function of the gut 
by and directly fueling lymphocytes and enterocytes [58]. Glutamine 
also increases the synthesis heat shock proteins and is as a precursor of 
glutathione, a critical antioxidant, which can help to protect cells under 
stress [59]. Administration of 25  g/kg/day of glutamine can reduce 
mortality and length of hospitalization in burn patients [60]. Evidence 
also supports supplementation of burns patients with arginine [61], 
which is associated with promotion of wound healing and immune 
function. Arginine acts to stimulate T-lymphocytes, augment the 
function of natural killer cells, and accelerate the synthesis of nitric 
oxide [62]. Data from non-burn critically ill patients, however, suggest 
that arginine can be harmful [63] and further study is warranted before 
its use can be recommended.

Requirements of micronutrients

A number of vitamins and micronutrients can help to facilitate 
wound healing and immune function following burn [4]. Severe 
burns lead to intense oxidative stress combined with substantial 
inflammatory response, which accelerates the depletion of endogenous 
antioxidant defenses [7]. Levels of vitamins A, C, D, iron, zinc, 
selenium and calcium can also drop following burns injury, which 
has resultant detrimental effects on wound healing, the immune 
system and skeletal muscle function [64]. Vitamin A is required for 
wound healing and epithelial growth. Vitamin C is needed for collagen 
production and cross-linking. Vitamin D is essential in the prevention 
of further bone catabolism post-burn, though its exact role and optimal 
dose after severe burn remains to be determined [65]. Pediatric burn 
patients often have altered calcium and vitamin D homeostasis [66] 
as well as osteoblast apoptosis, bone resorption and urinary calcium 
wasting [67]. Additionally, burned skins can no longer function to 
activate vitamin D3. One study in the pediatric burns population found 
that multivitamins containing 400  IU of vitamin D2 did not correct 
vitamin D insufficiency [67]. Methods to combat calcium and vitamin 
D deficiency need further investigation. 

The trace elements Iron (Fe), copper (Cu), selenium (Se), and Zinc 
(Zn) play an important roles in cellular and humoral immunity, but 
are lost in large quantities during burn wound exudation [68]. Se is 
important cell-mediated immunity; Fe is a cofactor for oxygen-carrying 
proteins [7]. Zn is critical for protein synthesis, wound healing, DNA 
replication, and lymphocyte function [69]. Cu deficiency has been 
implicated in arrhythmias, decreased immunity, and worse outcomes 
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