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Abstract

Cerebral palsy (CP) refers to a group of major neurodevelopmental disorders that affect movement and posture.
CP results from damage to the developing brain during pregnancy, or shortly after birth and a growing body of
research suggests that inflammation may play a vital role in its development. Here, we review the contribution of
inflammatory cytokines (such as NF-κ B, IL-6, IL-8, TNF-α ) to the mechanism of CP. Individual cytokines play
specific roles in pathogenesis of CP but they also interact with each other and form a complex network of
inflammatory reaction-regulating systems. Investigating the mechanisms of action of inflammatory cytokines in the
development of CP may contribute not only to our understanding of the pathogenesis of CP but may also lead to
more rational and effective intervention strategies.
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Abbreviations
NF-κ B: Nuclear factor kappa B; IL-6: Interleukin-6; IL-17:
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alpha; IFN-γ: Interferon-γ; MHC-I: Major Histocompatibility
complex-I; MHC-II: Major Histocompatibility Complex-II; CD:
Cluster of differentiation; MMPs: Matrix Metalloproteinases; VEGF:
Vascular Endothelial Growth Factor

Introduction
Cerebral palsy (CP) was defined at the recent Ninth China Pediatric

Cerebral Palsy Conference (2006) as the syndrome caused by non-
progressive brain damage and developmental defects from the moment
of conception to infancy. The main manifestations of CP are movement
disorders and abnormal posture CP may have many complications
associated with progressive disease but should be excluded from the
central movement disorders and normal children temporary motor
retardation [1]. CP is one of the main disabling diseases in children,
the clinical manifestations are diverse, and the etiology and
pathogenesis is complex and poorly understood. In 1993, Adlinolfi et
al. [2] hypothesized that abnormal expression of immune system
cytokines may initiate the perinatal brain damage that causes cerebral
palsy. Since then, increasing studies have focused on the potential
contribution of inflammatory cytokines to the pathophysiology of
brain injury [2-4]. The study of its mechanism has important
implications for developing rational and effective strategies to prevent
CP.

The Function of Inflammatory Cytokines in Cerebral
Palsy
The inflammatory reaction is an important part of the immune

response and is closely associated with CP, which is consistent with

prior work from our team [5,6]. The inflammatory reaction involves
factors associated with adhesion, metastasis, invasion, and activation of
inflammatory cells, as well as the release of inflammatory cytokines.
Various inflammatory cytokines including interleukin-6 (IL-6) and
tumor necrosis factor-alpha (TNF-α), participate in the inflammatory
reaction [7-9].

Current studies provide evidence that hypoxic-ischemic brain
damage and perinatal intrauterine infection are primary risk factors
for CP. Neurologic examinations reveal inflammatory cytokine
concentrations in term infants born to mothers with clinical
chorioamnionitis are associated with abnormalities. Infants who
developed hypoxic-ischemic encephalopathy (HIE) had significantly
higher cytokine concentrations. There is speculation that infection and
hypoxic-ischemic brain both affect inflammatory cytokines, which
may injure cerebral tissue [10,11]. Mounting evidence shows that the
higher levels of pro-inflammatory cytokines (e.g. TNF-α, IL-6, IL-8) in
the amniotic fluid, plasma, or umbilical cord blood are associated with
the occurrence of periventricular leukomalacia (PVL) and CP [12-15].
PVL, is a common brain white matter lesion, and is frequently
associated with CP. Some researchers suggest these cytokines could
lead to white matter damage in the immature brain by promoting the
production of other cytokines, and nitric oxide synthase (NO), which
induce leukocyte infiltration as well as the expression of adhesion
molecules that result in damage to oligodendrocytes. PVL and white
matter damage (WMD) are the main neuronal pathological alterations
of CP [16,17].

Animal models provide evidence that in addition to ischemia or
reperfusion injury, inflammatory cytokine-induced brain injury may
also play an important role in the pathogenesis of CP and PVL.
Recently, reverse transcriptase PCR-based methods were used to
compare gene expression profiles in brains of mouse pups exposed to
lipopolysaccharide (LPS) in utero with those of saline-treated controls.
The LPS-treated group showed varied increased levels of pro-
inflammatory genes including monocyte chemoattractant protein-1
(MCP-1), IL-6, and interleukin-1β (IL-1β). Thus a possible mechanism
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for adverse neurological outcomes following maternal infection
involves elevated cytokine levels [18,19]. Previous studies revealed that
following injection of LPS into the uteruses of pregnant rats, there was
a dose-dependent increase in the expression of tumor necrosis factor-α
and IL 1-β mRNA in the fetal rat brain. Moreover, there were increased
glial fibrillary acidic protein–positive astrocytes, decreased myelin
basic protein and altered immunoreactivity of o1igodendrocytes (OL)
in the hippocampal and the cortex areas of the brain [20,21].

Nuclear Factor kappa B
Nuclear factor kappa B (NF-κB), one of the multifunctional

transcription factors, plays a significant role in the process of immune
response, inflammatory reaction, cellular proliferation, survival,
transformation and apoptosis. NF-κ B is a heterodimer, which
comprises two subunit p50 and p65, which efficiently induces diverse
cytokines and other substances. These include interleukins (e.g. IL-,
IL-2, IL-6, IL-12), TNF-α, adhesion molecules (e.g.ICAM-1, VCAM-1,
ELAM-1) and many enzymes (e.g.COX-2, iNOS) which participate in
a cascade effect that culminates in an inflammatory reaction [22-24].
Under physiological conditions, a combination of NF-κB and its
inhibitory factor (I-κB) remains in the cytoplasm. After stimulation by
various extracellular signals, such as stress, virus infection, reactive
oxygen species, free radicals, I-κB is phosphorylated, which releases
NF-κB, and allows it to it move from cytoplasm into nucleus and bind
to promoter regions of its target genes. These target genes include those
that initiate the transcriptional programs of immunity and
inflammatory response-related genes [25,26].

Numerous studies provided evidence that NF-κB expression in the
central nervous system is a potentially major player in brain damage
[27-29]. Increasing data supports the notion that NF-κB may play a
role in important aspects of human reproduction. In the human
decidua, there was a significant increase in the nuclear localization of
p65 in decidual tissues at term compared with preterm tissues.
However, I-κB significantly increased in the cytoplasm of decidual
tissues at term when compared with preterm tissues. These data
highlight the potential importance of NF-κB in the control of
parturition-related genes [30-32]. Human gestational tissue (placenta,
amnion, and choriodecidua) explants treated with LPS, in the presence
or absence of the inhibitor of NF-κB activation, sulfasalazine (SASP)
showed that SASP treatment significantly inhibited NF-κB activation
as well as the release of IL-6, IL-8, and TNF-α. This study
demonstrated that NF-κB activation is important in the control of
LPS-stimulated proinflammatory cytokine release from the above
gestational tissues [33,34].

Interleukins
Interleukins (IL) are small-molecule markers of inflammation but

they are also regulatory proteins with a wide spectrum of activities. At
present, more than 20 types of ILs are known. ILs can act by inducing
cell differentiation and growth and by inducing functional receptors on
the surface of cells that are closely related to those found in
inflammatory reaction and the development and progression of
cerebral palsy.

IL-6 is a vital inflammatory mediator which is involved in many
pathologic and physiological processes of inflammatory disease. IL-6
levels in patient blood plasma acts as a sign of the activation of the
cytokine cascade reaction and reflects the relatedness between
inflammatory reaction and the severity of disease. There are significant

implications of latest findings in the study of IL-6 [35,36]. Umbilical
cord plasma concentration of IL-6 is a significant, independent
predictor of PVL-associated lesions. Preterm neonates born to mothers
with increased amniotic fluid concentrations of pro-inflammatory
cytokines, including IL-6, show increased risk of subsequently
developing PVL and CP. Buhimschi et al. [37] provide evidence that
amniotic fluid (AF) of women with intra-amniotic inflammation, and
umbilical cord blood of neonates, have high levels of IL-6. As well,
intra-amniotic inflammation is characterized by significantly elevated
cord blood IL-6 levels. The cord blood-to-AF IL-6 ratio could be taken
as a determinative indicator that reflects the severity of intra-amniotic
inflammation and the inflammatory response in the fetus. In recent
experiments, it was found that high IL-6 levels may be associated with
an increased risk of neuronal cell necrosis [37,38]. Other researchers
provide evidence that IL-6 could induce oligodendrocyte progenitor
cells (OPC) to transform into astrocytes, and lead to myelination in the
white matter [39,40]. Some researchers have demonstrated that
exposure to IL-17A stimulates OPCs to mature and contribute to the
inflammatory response [41].

Interleukin-8 (IL-8) is an important inflammatory mediator that is
produced primarily by monocyte-macrophage cells, which has
significant effects on the chemotaxis and activation of neutrophils, and
IL-8 also participates in local inflammation. The mechanism of IL-8
action involves its adherence to the surface of vascular endothelial
cells, by activating polymorphonuclear leukocyte (PMN), binding to
ligand of chemotactic factors on the vascular endothelial cells. Passing
through vascular endothelium along a concentration gradient which is
formed by free chemotactic factors, it could enter into the tissue spaces
[42,43]. IL-8 is associated with many stages of pregnancy. IL-8 levels in
cervical secretions from patients with 37~42 weeks singleton
pregnancies were measured by enzyme linked immunosorbent assay
(ELISA). The analysis showed that measurement of IL-8 in cervical
secretions is an effective method to identify patients at risk of
chorioamnionitis [44]. To better understand the inflammatory
response in the CNS after chorioamnionitis, mRNA levels of cytokines
were determined in different regions of the CNS. Interleukin 1β levels
increased in the hippocampus, cortex and cerebellum after LPS
exposure, while IL-8 levels increased in the periventricular white
matter. These data suggest that intra-amniotic LPS exposure causes
acute and region-specific changes in inflammatory markers in the fetal
brain [45].

Tumor Necrosis Factor-α
Tumor necrosis factor- α (TNF-α) is an important inflammatory

mediator, which is involved in the earliest stages of the inflammatory
reaction. TNF-α can activate neutrophils and lymphocytes, increase
the permeability of endothelial cells, regulate metabolic activity of
other tissues, promote the synthesis and secreti on of other cytokines
and participate in brain damage.

Hansen et al. studied 74 very preterm infants with a mean
gestational age of 27.1 (2.0) weeks who displayed increased levels of
proinflammatory cytokines, during the first 72 postnatal hours and
then again at 2years corrected age. Infants born preterm with increased
concentrations of TNF-α and IL-6 in cord blood showed an increased
risk of impaired developmental outcome and psychomotor
developmental index (PDL) <85 at 2 years corrected age [46].
Moreover, increased concentrations of TNF-α in cord blood were
associated with cerebral palsy [47,48]. Lin et al. compared 32 preterm
children with PVL-induced CP, with the same number of control
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preterm children with normal neurodevelopment and matched for
gestational age, in order to determine whether preterm children with
CP showed altered inflammatory responses at school-age [14]. The
data show that TNF-α expression was significantly higher in the
plasma (53 ± 16 pg/ml vs. 10± 4 pg/ml, p<0.001) and supernatants of
LPS-stimulated PBMCs (1736 ± 252 pg/ml vs. 1031 ± 135 pg/ml,
p=0.003) in the CP group than in the control group. Following LPS
stimulation, intracellular levels of TNF-α in PBMCs was significantly
higher in the CP group than in the control group. The nonstimulated
PBMCs of the CP group also had significantly lower TLR-4 mRNA
levels, toll-like receptor 4 (TLR-4), transforming growth factor-beta-
activated kinase 1(TAK1), Jun N -terminal kinase (JNK) and I-kappaB
kinase-gamma (IκB kinase-γ) than in the control group. TLR-4 mRNA
levels in PBMCs were highly correlated with TNF-α levels in the LPS-
stimulated PBMCs. Compared with preterm children with normal
neurodevelopment, preterm children with PVL had different
inflammatory responses at school age. These changes included not only
higher TNF-α level in the plasma, but also changes in the supernatants
of LPS-stimulated PBMCs, and in proinflammatory gene expression in
PBMCs.

TNF-α can stimulate endothelial cells to express chemokines and
adhesion molecules and also change the permeability of blood brain
barrier that attract inflammatory cells into the nervous tissue. These
processes are associated with cerebral palsy. Vascular endothelial cells
are main targets of TNF-α and interleukin-1beta (IL-1β) and they
stimulate endothelial cells to express adhesion molecules (ICAM-1),
which attract leucocytes into the peripheral region [49-51]. There is
high in situ expression of TNF-α and IL-1β, particularly TNF-α, in the
brain tissue of children with PVL. Cell culture experiments show high
expression of intercellular adhesion molecule-1 (ICAM-1) by
endothelial cells, which is induced by TNF-α, IL-1β [52-54]. TNF-α
and IL-6 in neonatal brain damage might link to the reduction of
regional cerebral blood flow, which could affect coagulation systems,
promote thrombus formation, and thereby induce brain ischemia and
hypoxia, as well as generating an abnormal immune response.
Furthermore, this could adversely affect OL, astrocytes and medullary
sheaths [55,56].

Other researchers have concluded that TNF-α inhibits the
differentiation of OPC, and influences the growth and development of
myelin [57,58]. In a series of in vitro experiments, TNF-α was shown to
eradicate OL and trigger apoptotsis. The signaling pathway of TNF-α
could increase the concentration of ceramide in the cytoplasm which
in turn would induce apoptosis through accumulating two types of
membrane receptors, caspase-8 and caspase-9, and activating
caspase-3 or caspase-7, or activating sphingomyelinase [59-61].

Other Cytokines
Increasing evidence implicates other cytokines, such as interferon-γ

(IFN-γ), as well as matrix metalloproteinases (MMPs) and vascular
endothelial growth factor (VEGF) in the occurrence and progression
of CP [62-64].

INF-γ is a key factor in central nervous system trauma and human
neurodegenerative diseases. Macrophages and astrocytes that is
immunoreactive for INF-γ antibody, aggregate to the
encephalomalacia of PVL children, which implicates INF-γ in the
pathogenesis of PVL. INF-γ plays an important role in the process of
PVL by up-regulating the expression of major histocompatibility
complex-I (MHC-I), major histocompatibility complex-II (MHC-II),

and cluster of differentiation (CD) cell surface molecules. INF-γ can
stimulate the production of cytokines and generate a positive feedback
effect [65,66]. MMPs are a family of zinc-dependent proteinases
involved in the degradation of the extracellular matrix. Many tissue
cell types generate and release MMPs, which are dependent on the zinc
ion for their catalytic activity [67,68]. In the inflammatory reaction
associated with central nervous system disease, MMPs have striking
toxic effects on neurons, which could degrade the basal lamina and
disrupt the blood-brain barrier, leading to vasogenic brain edema and
hemorrhagic transformation [69-71]. Studies confirm the level of
MMP-8 can be used to predict the risk of the development of PVL and
CP in premature infants [72]. Other studies implicate MMP-9 in the
initiation and progression of human labor and delivery, particularly in
relation to premature rupture of fetal membranes and other
pathological pregnancy conditions [73]. Hypoxic ischemic
encephalopathy is a significant factor in the death of term infants and
is an important pathogenic factor of cerebral palsy. VEGF promotes
vascular endothelial cell proliferation, increases vascular permeability
and accelerates neovascularization. Experiments to understand the role
of VEGF in hypoxic-ischemic brain damage in animal models are now
being reported [74-80]. VEGF may exert a direct neuroprotective effect
on endothelial cells and astrocytes in brain by inducing angiogenesis,
which directly or indirectly increases cerebral blood flow to ischemic
area [81].The potential model for how the cytokines are involved in CP,
in Figure 1.

Figure 1: Potential model for how the cytokines are involved in CP.

Placental Cytokines in the Pathogenesis of CP
CP is a non-progressive motor impairment syndrome and has no

effective cure. The etiology of CP and other related perinatal brain
injuries remains unknown. However, in the last decade, some evidence
suggests that placental infarctions, disproportionate fetal growth, and
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inflammatory conditions apparently limited to the placenta, are also
associated with an increased risk of CP and other neurologic
impairments [82-85]. Additionally, there is a growing body of evidence
correlating CP with the production of placental cytokines, which could
result in elevated fetal proinflammatory cytokine exposure, and
culminate in the development of neonatal neurologic injury [86-88].

Cytokines Effects Source

NF-κB NF-κ B is a heterodimer, which comprises two subunit
p50 and p65, which

efficiently induces diverse cytokines and other
substances. These include

interleukins, TNF-α , adhesion molecules and many
enzymes which participate in the cascade of the

inflammatory reaction.

[22-31]

IL-6 IL-6 is an important inflammatory mediator involved in
many pathologic and physiological processes of

inflammatory disease. IL-6 levels in the patient blood
plasma act as an indicator of the activation of the

cytokine cascade reaction.

[32-36]

IL-17 IL-17 exposure stimulates OPCs to mature and
participate in the inflammatory response

[37]

IL-8 IL-8 is produced mainly from monocyte-macrophage
cells and has significant effects on chemotaxis and

activation of neutrophils, and also participates in local
inflammation. IL-8 is involved in all stages of

pregnancy.

[39-42]

TNF-α TNF-α is an important inflammatory mediator and
involved in the earliest events of the inflammatory

reaction. Its actions include activation of neutrophils
and lymphocytes, increasing the permeability of

endothelial cells, regulating the metabolic activity of
nearby tissues, promoting the synthesis and secretion
of other cytokines and participation in brain damage.

[43-58]

IFN-γ INF-γ play an important role in the process of PVL by
up-regulating the expression of MHC-I, MHC-II and

CD cell surface markers.

[62,63]

MMPs MMPs are a family of zinc-dependent proteinases
involved in the degradation of the extracellular matrix.

In the inflammatory reaction of central nervous
system disease, MMPs has a striking toxic effect on
neurons which can lead to degradation of the basal

lamina and disruption of the blood-brain barrier,
leading to vasogenic brain edema and hemorrhagic

transformation.

[64-73]

VEGF VEGF promotes vascular endothelial cells to
proliferate, increases vascular

permeability and accelerates neovascularization.

[74-81]

Table 1: Summary of cytokines and their effects.

Within a prospective cohort study, levels of cytokines IL-1β, IL-6,
IL-8, and TNF-α were determined by ELISA by enzyme-linked in
maternal blood samples at rupture and delivery, as well as from fetal
umbilical cord blood. These data show that inflammation of the fetal
side of the placenta was associated with elevated maternal IL-6 and
IL-8 at delivery and increased fetal IL-1β, IL-6, IL-8, and TNF-α [89].
The mechanism by which maternal infection can generate a placental
inflammatory response was examined in rats exposed to
lipopolysaccharide at preterm and near-term gestational ages.
Placental cytokine production and activation of the Toll-like receptor 4
(TLR4) pathways were measured by ELISA and Western blot analysis.
The finding suggested that preterm placentas may have a greater

placental cytokine response to lipopolysaccharide exposure. Moreover,
increased phosphorylated NFκB was detected and this suggests that
placental cytokine induction may occur in response to activation of the
TLR4 pathway [90,91]. Elovitz et al. [92] found in a rodent model that
minor inflammation in the uterus, which was insufficient to induce a
maternal systemic response as determined by IL-6 levels, was
nevertheless able to elicit a strong inflammatory cytokine response in
the placenta, fetus and fetal brain and resulted in permanent changes
in gene expression in the offspring [91].

In contrast, studies of inflammatory cytokines including IL-1, IL-6
IL-8 and TNF-α in neonatal blood of very premature infants failed to
distinguish those infant with subsequent diagnoses of CP from control
children. Other studies show that proinflammatory cytokines, TNF-α,
IL-1β, and IL-6, do not cross the term placental barrier, as assessed by
ex vivo perfusion experiments [92-94]. Clearly, studies are needed to
clarify the contribution of the placenta, if any, to the pathogenesis of
CP.

Conclusion
In conclusion, inflammatory cytokines are likely to play a significant

role in the pathogenesis of CP. While each of the inflammatory
cytokines has its own characteristic properties and actions, specific
combinations of inflammatory cytokines form a complex network that
alters the inflammatory reaction and contributes to the pathogenesis of
CP. However, the diversity and complexity of inflammatory cytokines
limits our understanding of the pathophysiological mechanism
underlying CP. Further research into the role of inflammatory
cytokines in CP is an essential prerequisite to understanding their
mechanism of action, and to developing effective therapies to treat or
prevent CP. (The summary of cytokines and their effects were shown in
Table 1.
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