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ABSTRACT

The devastating consequences of perinatal liver inflammation contribute to a pressing need to develop therapeutics 
for the diseases that underly this condition. Biliary atresia (BA) is a perinatal inflammatory disease of the liver 
that results in obliterative cholangiopathy and rapidly progresses to liver failure, requiring transplantation. The 
ability to develop targeted therapies requires an understanding of the immune mechanisms that mitigate perinatal 
liver inflammation. This article reviews our recent findings demonstrating that in a murine model of perinatal 
hepatic inflammation, Ly6cLo non-classical monocytes express a pro-reparative transcriptomic profile and that the 
relative abundance of Ly6cLo monocytes promotes resolution of perinatal liver inflammation, rendering neonatal 
pups resistant to disease. We also examine the lineage relationship between monocyte subsets, reviewing data that 
suggests classical monocytes are a precursor for non-classical monocytes, and the alternative possibility that separate 
progenitors exist for each subset. Although a precursor-product relationship between classical and non-classical 
monocytes might exist in certain environments, we argue that they may also arise from separate progenitors, which 
is evident by sustained Ly6cLo non-classical monocyte expansion when Ly6cHi monocytes are absent. An improved 
understanding of monocyte subsets and their developmental trajectories during perinatal hepatic inflammation 
will provide insight into how therapies directed at controlling monocyte function may help alleviate the devastating 
consequences of diseases like BA.
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INTRODUCTION

Perinatal hepatic inflammation can have devastating, life-
threatening consequences. Biliary atresia (BA) is an example 
of a progressive inflammatory disease that occurs in the liver 
of neonates and infants. BA results in rapid obliteration of the 
biliary tree, leading to liver failure and cirrhosis. Accounting for 
approximately 75% of liver transplants performed in children 
under the age of 2 years, BA is the most common indication for 
pediatric liver transplant [1,2]. The primary treatment of BA relies 
on the Kasai portoenterostomy, a palliative procedure in most 
cases as 70% of children still develop progressive liver failure [2]. 
The etiology of BA is not well understood, but is thought to be 
attributed to multiple factors including genetic predisposition, 
immune dysregulation, and toxic and infectious causes [2]. The 
timing of injury is also not well understood. Compelling evidence 
supports the idea that the pathogenesis of BA occurs in utero 

[3]. The result of this perinatal insult triggers an inflammatory 
cascade in the liver. A better understanding of the mechanisms by 
which perinatal hepatic inflammation is initiated and resolved is 
an important step in identifying therapeutic targets that can halt 
the development of progressive liver injury and the need for liver 
transplantation in diseases like BA.

The uniform observation of periportal inflammation in patients 
with BA indicates that immune-mediated mechanisms are central 
to the pathogenesis and resolution of hepatic inflammation. 
Attempts to decrease periportal inflammation in patients with BA 
have included corticosteroids and intravenous immunoglobulin 
after portoenterostomy, but these treatments have not improved 
post-Kasai bile drainage or changed the overall survival of patients 
with their native liver [4,5]. The lack of clear efficacy using these 
treatments suggests that immunomodulatory agents that have 
broad effects may lack the specificity necessary to mitigate disease 
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progression.

IMMUNE SYSTEM MITIGATION OF 
PERINATAL LIVER INFLAMMATION 

Current research supports the involvement of macrophages [6] 
and dendritic cells [7] in activating natural killer (NK) cells and 
neutrophils, respectively, to induce a proinflammatory response. 
Immune signals from NK cells [7], CD4+ T-helper cells [8-11], and 
gamma-delta T-cells [12] have also been implicated in the pathogenesis 
of perinatal inflammation in mice. Additionally, monocytes play an 
important role in mitigating hepatic inflammation and are among 
the initial wave of leukocytes recruited to hepatic parenchyma at 
the time of insult [13]. However, their role in perinatal hepatic 
inflammatory diseases like BA is poorly understood.  

Our current understanding of monocyte function during 
inflammation is largely based on experiments in adult animals [14-
17]. Previous data support the idea that classical monocytes (defined 
by cell surface expression of Ly6cHiCcr2HiCx3cr1int) perform 
pro-inflammatory functions, whereas non-classical monocytes 
(Ly6cLoCcr2LoCx3cr1Hi) aid in pro-reparative functions [13,17-
20]. In the physiologic state, Ly6cLoCcr2LoCx3cr1Hi non-classical 
monocytes act as vascular scavengers, surveilling the endothelium 
and eliminating luminal micoparticles [21,22], whereas circulating 
Ly6cHiCcr2HiCx3cr1int classical monocytes are believed to be 
selectively recruited to inflamed tissues, where they participate in 
a pro-inflammatory response and give rise to monocyte-derived 
macrophages [23-25].

We investigated the role of classical and non-classical monocyte 
subsets in the pathogenesis and resolution of perinatal liver 
inflammation using a mouse model of perinatal hepatic 
inflammation. Rhesus rotavirus (RRV) infection in neonatal 
BALBc mice results in progressive hepatic inflammation that 
resembles the histologic findings of human BA [26]. Our findings 
demonstrate that (i) Ly6cLo non-classical monocytes express a pro-
reparative transcriptomic signature during the perinatal period, (ii) 
the abundance of Ly6cLo non-classical monocytes inversely correlates 
with susceptibility to RRV-mediated perinatal liver injury, and (iii) 
experimental manipulation of Ly6cLo non-classical monocytes can 
render neonatal pups resistant to perinatal liver injury [27]. 

The transcriptomic profile of Ly6cLo non-classical monocytes in 
the perinatal liver had higher expression of anti-inflammatory 
genes such as Il4ra and Tgfb1 than did Ly6cHi classical monocytes. 
Furthermore, we observed a physiologic abundance of Ly6cLo non-
classical monocytes compared to Ly6cHi classical monocytes in the 
late-gestation liver. Specifically, Ly6cLo non-classical monocytes were 
the predominant monocyte population in the late-gestation liver, 
outnumbering classical monocytes by 2.5-fold, before equalizing to 
the known 1:1 relationship that exists in circulation after birth [20].

Given the known anti-inflammatory profile of Ly6cLo non-classical 
monocytes, we questioned whether this relative abundance of 
Ly6cLo non-classical monocytes confers resistance to perinatal liver 
inflammation. Using fetal surgery techniques that we previously 
described [28,29], we infected late-gestation fetuses with RRV and 
confirmed inflammatory changes in the fetal liver. We observed 
that 75% of live-born mice infected with RRV in utero lived 
beyond 21 days, which was significantly higher than the proportion 
surviving after neonatal injection (21%). Furthermore, unlike mice 
injected postnatally, the mice infected in utero did not demonstrate 
neonatal growth restriction or weight loss. These findings suggested 

that the observed physiologic differences in monocyte subsets may 
account for the resistance to disease observed in late-gestation fetal 
mice.

We then hypothesized that experimental expansion of Ly6cLo non-
classical monocytes in the neonatal liver would spare postnatal 
mice from hepatic inflammation. Indeed, after depleting both 
Ly6cHi classical monocytes and neutrophil populations in a 
postnatal pup we found a significant increase in Ly6cLo non-classical 
monocytes and a high Ly6cLo:Ly6cHi ratio similar to that of the late-
gestation fetus. We found that this environment of Ly6cLo non-
classical monocyte expansion conferred protection against RRV-
mediated perinatal inflammation. Our findings were confirmed 
histologically, demonstrating less severe inflammatory changes in 
the liver parenchyma with near resolution of inflammation in most 
pups. This result suggested that resistance to perinatal inflammation 
was either due to diminished levels of pro-inflammatory classical 
monocytes and neutrophils, or due to the abundance of non-
classical monocytes. To distinguish these possibilities, we inhibited 
Ly6cLo non-classical monocytes in the setting of Ly6cHi classical 
monocyte and neutrophil depletion and found that susceptibility 
to RRV-mediated inflammation was restored. These findings 
demonstrate that the abundance of Ly6cLo non-classical monocytes 
is indeed associated with resolution of RRV-mediated hepatic 
inflammation [27]. Collectively, the results of these experiments 
indicate that non-classical monocytes are crucial for resolution of 
perinatal hepatic inflammation and suggest that these cells should 
serve as targets for therapies designed to mitigate the effects of 
perinatal liver inflammation.

LINEAGE RELATIONSHIP BETWEEN LY6CHi 

CLASSICAL MONOCYTES AND LY6CLo NON-
CLASSICAL MONOCYTES

Our data also informs the lineage relationship between non-
classical monocytes and classical monocytes. The expansion of 
Ly6cLo non-classical monocytes that occurs in the absence of Ly6cHi 
classical monocytes suggests that non-classical monocytes may not 
originate from classical monocytes during RRV-mediated perinatal 
hepatic inflammation. 

There are currently two hypotheses that address the development 
of classical and non-classical monocyte subsets. The most accepted 
hypothesis supports the idea that classical monocytes serve as a 
precursor for non-classical monocytes [17,24,30-32]. An alternative 
hypothesis that has been proposed is that separate progenitors 
exist for each subset [23,30]. Studies exploring these hypotheses 
have focused on bone marrow monocytes in the adult mouse. To 
the best of our knowledge, studies have not been replicated in the 
neonatal mouse or specifically in the setting of perinatal hepatic 
inflammation. 

The first hypothesis, originally described by Sunderkötter et al., 
demonstrated that non-classical monocytes are generated from 
classical monocytes in peripheral circulation [24]. In the original 
experiments, the authors ablated all monocyte populations by 
intravenous administration of clodronate-loaded liposomes and 
then used fluorescence-activated cell sorter analysis to monitor re-
emergence of the monocyte subsets in peripheral blood [24]. Ly6cHi 
classical monocytes re-emerged on day 2 after ablation, whereas 
Ly6cLo non-classical monocytes re-emerged on days 3 and 5 [24]. 
These findings suggest that Ly6cHi classical monocytes serve as a 
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precursor for Ly6cLo non-classical monocytes.  

Subsequent studies utilizing similar methods to Sunderkötter et al. 
also observed this precursor-product relationship between the two 
monocyte subsets [30,33,34]. Using pulse chase technology, Yona 
et al. supported this linear development relationship [31]. The 
authors mapped BrdU (5-bromo-2'-deoxyuridine) incorporation 
in monocyte subsets, showing that Ly6cHi classical monocytes 
were rapidly present in the peripheral blood, whereas Ly6cLo non-
classical monocytes were observed in the peripheral blood after 3 
days despite incorporation of BrdU in the bone marrow at 6 hours 
[31]. The appearance of classical monocytes first, followed by non-
classical monocytes, support the idea that Ly6cHi monocytes give 
rise to Ly6cLo monocytes.

Del Sacco et al. investigated the relationship between monocyte 
subsets in the liver using spinning-disk fluorescent confocal 
intravital microscopy (SD-IVM) [17]. Monocytes subsets were 
identified by the cell surface markers using Ccr2 and Cx3cr1, 
with classical monocytes being Ccr2Hi Cx3cr1Lo and non-classical 
monocytes defined as Ccr2Lo Cx3cr1Hi. At baseline, ~5% of 
patrolling lymphocytes in the liver vasculature were Ccr2Hi 

classical monocytes and no Cx3cr1Hi non-classical monocytes 
were detected. Upon injury, Ccr2Hi classical monocytes began 
to accumulate around the injured area between 8 and 72 hours 
later, whereas Cx3cr1Hi non-classical monocytes became prevalent 
between 48 and 72 hours with identical localization to the Ccr2Hi 
cells [17]. There was also a transition from Ccr2Hi Cx3cr1Lo to 
Ccr2Lo Cx3cr1Hi within the tissue microenvironment surrounding 
the focal site of injury that was dependent on a local milieu of 
cytokines and independent of the recruitment of additional cells to 
the injury site [17]. This phenotypic transition was correlated with 
tissue repair and thus suggestive of a local, cytokine-driven in situ 
reprogramming of pro-inflammatory classical monocytes into pro-
reparative non-classical monocytes during liver injury.  

Arguably, the most compelling evidence supporting the idea that 
Ly6cHi classical monocytes may give rise to Ly6cLo non-classical 
monocytes was demonstrated by adoptive transfer methods. 
Varol et al. demonstrated that in the absence of inflammation, 
transferred bone marrow Ly6cHi classical monocytes home back 
to the bone marrow of recipient mice in which myeloid dendritic 
cell progenitors (MDPs) are depleted and participate in Ly6cLo 
non-classical monocyte differentiation [35]. The authors excluded 
MDPs on the basis that they are Ly6c negative; however, recent 
evidence supports the presence of common monocyte progenitors 
(cMoPs) that are Ly6c positive, confounding the results of this 
study [36]. The recent discovery of common monocyte progenitors 
(cMoPs) certainly raises the question of whether other precursors 
exist in the lineage relationship between MDPs and final monocyte 
subsets that have yet to be discovered.

Challenging this precursor-product relationship between monocytes 
subsets, Nahrendorf et al. used adoptive transfer methods to 
demonstrate sequential recruitment of different monocyte subsets 
to the myocardium after a myocardial ischemic injury in a biphasic 
manner [37]. Findings demonstrated that Ly6cHi classical monocytes 
were present at the site of injury during the first 3 days (phase I) and 
Ly6cLo non-classical monocytes increased between days 4-7 (phase 
II) [37-39]. The adoptive transfer methods in CCR2 knockout mice 
demonstrated the following (i) efficient accumulation of adoptively 
transferred Ly6cLo monocytes in infarcts in phase II; (b) the absence 
of Ly6cHi monocytes in phase I, but presence of Ly6cLo monocytes 
in phase II, in infarcts of CCR2−/− mice; and (c) presence of Ly6chi 

monocytes in phase I, but absence of Ly6cLo monocytes in phase 
II, in infarcts of CX3CR1−/− mice [37]. The expansion of Ly6cLo 
non-classical monocytes when Ly6cHi classical monocytes are absent 
argue against in situ conversion of Ly6cHi classical monocytes to 
Ly6cLo non-classical monocytes during tissue repair. 

CONCLUSION

While our findings demonstrate the importance of Ly6cLo non-
classical monocytes in resolution of perinatal liver inflammation 
and raise the possibility of a separate progenitor relationship 
between the monocyte subsets, the evidence supporting an alternate 
hypothesis of a precursor-product relationship demonstrates 
the need for continued investigation and further understanding 
of this developmental relationship. This is especially relevant 
in the setting of perinatal liver inflammation, given its morbid 
consequences. Deeper understanding of the role of monocyte 
subsets and particularly their developmental lineage during 
inflammation can provide insight for future targeted therapy that 
could halt inflammation and alleviate the burden of devastating 
inflammatory conditions, such as BA.
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