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The Introduction of α-Synuclein
Parkinson’s disease (PD) is pathologically characterized by 

α-synuclein immunopositive intracellular deposits termed as Lewy’s 
bodies [1]. It is well known that α-synuclein consists of 140 amino 
acids and is divided into three distinct regions: (1) The N-terminal 
region (1-60 amino acid residues), containing KTKEGV repeats and 
forming amphipathic α-helices; (2) The central region (61-95 amino 
acids residues), serving as a hydrophobic NAC (non-Aβ component of 
Alzheimer’s disease) peptide; (3) The C-terminal region (96-140 amino 
acid residues) [2].

In nature, α-synuclein is an unfolded protein which can 
spontaneously aggregate into oligomers and fibrils. The aggregation of 
α-synuclein is considered as the pivotal step for the development of PD. 
Locus duplication/triplication and mutations in α-synuclein gene make 
the α-synuclein prone to aggregate, and lead to the early-onset of PD 
[3-6].

The Finding of Extracellular α-Synulein
In the beginning of the 21st century, α-synuclein monomer was 

firstly detected in human cerebrospinal fluid (CSF) and blood plasma 
in both PD patients and the normal human subjects [7]. Following this 
initial finding, Millter, et al found that the blood level of α-synuclein 
monomers was doubled in familial PD patients with α-synuclein gene 
locus triplication [8].

In 2005, the aggregated extracellular α-synuclein (eSNCA) was 
found in cell culture medium. Both soluble oligomeric and monomeric 
species of α-synuclein were detected as early as 2 h followed the 
transient overexpression of human α-synuclein in the differentiated 
SH-SY5Y cells and accumulated over time [9]. In the next year, El-
Agnaf et al. [10] confirmed the existence of aggregated eSNCA in the 
normal plasma and postmortem CSF from either PD patients or control 
subject. In 2012, Danzer et al. [11] further established that eSNCA 
oligomers either dispersed freely or lay in the exosomes.

The Production of eSNCA
Although eSNCA is detected the plasma and CSF, it doesn’t mean 

that eSNCA is secreted in vivo by the neuronal cells since α-synuclein 
is also released from peripheral cells (such as red cells) or dead neurons 
[12,13]. In 2011, using a novel highly sensitive ELISA in conjugation 
with an in vivo microdialysis technique, Emmanouilidou et al. [14] 
provided the first solid evidence. They found that α-synuclein was 

readily detected in the interstitial fluid of both α-synuclein transgenic 
mice and human patients with traumatic brain injury.

The Compartment of α-Synuclein and the Formation of 
Multivesicular Bodies

In the physiological condition, α-synuclein often exists as 
monomer. Some disperses in the cytosol; some are loosely attached to 
the cytosolic surface of endoplasmic reticulum vesicles; and the others 
are compartmented into the lumen of vesicles [9].

The vesicles containing α-synuclein can be transformed to early 
endosomes. Part of early endosome is casted out of the cells through the 
Ras-related protein Rab11a-dependent recycling endosome pathway, 
especially in the physiological conditions [15]. For the remainders, 
the peripheral membrane around the endosome is invaginated into 
the endosome lumen, which forms luminal vesicles. Thus, the early 
endosomes are transformed into the late endosomes, and are also 
known as multivesicular bodies (MVBs). In this process, α-synuclein is 
also sorted into luminal vesicles. 

The endosomal sorting complex required for transport (ESCRT) 
complex play an important rolein the formation of MVBs, which 
can recognize cargo proteins, sort α-synulcein into subregionals of 
the endosomal membrane. It has been reported that the charged 
multivesicular body protein 2B (CHMP2B), a subunit of ESCRT-III 
complex, was found in the lewy’s bodies in the brain of PD patients 
[16]. Moreover, the vacuolar protein sorting 4 (VPS4), a regulator of 
ESCRT-III, was also found to participate in the formation of MVBs. 
As an ATPase, VPS4 releases the ESCRT-III machinery from the 
endosomal membrane, promotes the membrane invagination and the 
formation of MVB vesicles. The dominant-negative mutant of VPS4 
interfered with the lysosomal targeting of α-synuclein, and facilitated 
α-synuclein secretion [15].
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Abstract
α-synuclein plays an important role in the development of Parkinson’s disease (PD). It was believed that α-synuclein 
elicits its effects in the neuronal cytosol. However, the finding of extracellular α-synuclein expands the orthodox spectrum. 
The α-synuclein can be secreted via the multi-vesicle bodies-mediated exosome and the recycling-endosome pathway. 
In the intercellular milieu, the secreted α-synuclein is degraded by enzymes or engulfed by neighboring cells. The 
remaining α-synuclein can induce the neurotoxicity, activate microglia, and promote the pathogenesis of Parkinson’s 
disease. In the review, we focus on the recent findings of extracellular α-synuclein and its biological significance.
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In the physiological condition, MVB fuses with the autophagosome 
for lysosomal degradation [15]. However, when α-synuclein is 
excessively produced or lysosomes fail to clear α-synuclein, the 
superfluous α-synuclein is secreted out of the cells.

MVB-mediated Exosome Secreting Pathway
Due to the lack of the signal recognition sequence in the structure 

of α-synuclein, its translocation is independent on the ER/Golgi 
exporting pathway. This is supported by the fact that disruption of the 
classical export with brefeldin A, a classical inhibitor for the protein 
transportation from endoplasmic reticulum to the Golgi complex, 
failed to block the release of α-synuclein.

It is known that at least four non-classical secreting (export) 
pathways may exist [17]: the endosomal pathways (for instance, 
interleukin-1b and thioredoxin), direct translocation across the plasma 
membrane (for instance, FGF-1 and FGF-2), the transporter-assisted 
flip-flop mechanism and formation of exosomes. For the secretion of 
α-synuclein, the most attractive one is the MVB-mediated exsosome 
pathway [13]. Some MVB specific containing proteins, such as alix 
and flottilin, have been found in the α-synulcein-positive vesicles. 
Also, α-synuclein oligomers exist in the exosomal fraction of primary 
neurons, presumably lying on the outer surface of exosomes [14]. 
Furthermore, since the exosome-mediated exocytosis is a calcium-
dependent process, the decrease in intracellular calcium concentration 
was shown to inhibit the secretion of α-synuclein [13].

Alternatively, the recycling endosome pathway may also play an 
important role in the process [18]. It has been found that α-synuclein is 
also aggregated in the recycling endosome [15]. Although the recycling 
endosome pathway is mainly intended to clear up the extracellular 
materials via the endocytosis, accumulating evidences indicate that 
it may be also involved in the secretion of α-synuclein. Firstly, the 
engulfed endosomes can be re-secreted out of the cells. Secondly, 
by the unknown mechanism, the α-synuclein in early endosomes is 
transported into the recycling endosome, and then is casted into the 
extracellular milieu [15]. This pathway is found to be regulated by 
rab11a and heat shock protein 90 (HSP90) [18]. Rab11a is the marker 
for this kind of endosome. Overexpression of Rab11a can alleviate 
the α-synuclein accumulation and protect dopaminergic neuron 
from degeneration in animal models of PD [19]. HSP90 was shown 
to interact with Rab11a and co-localize with Rab11a in the substantia 
nigra pars compacta (SNPc) of PD patients. Moreover, inhibition of 
HSP90 attenuated the exocytosis of internalized eSNCA [18].

In addition, other secreting pathways also exist in the secreting 
process of α-synuclein. For instance, α-synuclein can be directly 
integrated into secretory vesicles and subsequently released by 
exocytosis [9]. The low temperature, a classical blocker of vesicular 
exocytosis, reduced the secretion of α-synuclein.

Although two pathways have been proposed, it is difficult to 
evaluate the role of each pathway in the labile cell microenvironment. 
Based on the fact that the level of the monomer is higher than that of 
the aggregated forms, it appears that that the recycling pathway may be 
predominant, especially in the physiological condition [15]. However, 
the controversial result was also reported [11].

The Fate of the eSNCA
The eSNCA is disposed via either enzymatic degradation or 

phagocytosis.

The degradation of eSNCA is highly associated with the enzyme of 

neurosin [20]. As a specific enzyme for the degradation of α-synuclein, 
neurosin cleaves α-synuclein between lysine 80 and threonine 81 in 
the NAC region and degrades eSNCA fibril and oligomers [20,21]. 
The enzyme is secreted from the cells and activated in the extracellular 
space. Insufficient or abnormal function of neurosin might lead to the 
aggregation of α-synuclein in the extracellular space.

However, α-synuclein monomers may not be good substrates 
for neurosin. Several matrix metalloproteinases (MMPs), especially 
MMP3, play a critical role for the degradation of eSNCA monomers. 
As zinc-dependent endopeptidases, MMPs are synthesized primarily 
by astrocytes, microglias, and neurons. It was shown that MMPs 
(such as MMP-3, MMP-14, MMP-2, and MMP-9) effectively cleaved 
α-synuclein monomers [22]. In the content, MMP3 shows the most 
potent enzymatic activity. Besides, overexpression of α-synuclein 
remarkably up-regulates the MMP3 expression.

Recently, plasmin is found to cleave α-synuclein, mainly in the 
N-terminal region. Both aggregates and monomers of α-synuclein are 
good substrates for plasmin. Furthermore, eSNCA is shown to promote 
the expression of plasminogen activator inhibitor-1 and increases the 
plasmin activity [23].

Phagocytosis is another pathway for removing eSNCA. As 
mentioned above, the α-synuclein is exported in the form of exosomes, 
suggesting that α-synuclein shuttles between the host neurons and the 
neighboring cells [24]. Exosome-associated α-synuclein oligomers are 
more likely to be taken up by recipient cells, which is more potent in 
toxicity as compared with free α-synuclein oligomers [11,25]. After 
being taken up, fibrillar α-synuclein is transported in the manner of 
anterograde axonal transport, and released into the intercellular space, 
which can be taken up by other neurons [26].

Endocytosis is involved in numerous cellular processes such as 
nutrients uptake, synaptic vesicle recycling, and regulation of cell-
surface expression of signaling receptors [27,28]. The aggregated 
eSNCA was found to be internalized into neuronal cells via clathrin-
dependent endocytosis, then move into the lysosome through the 
recycling endosomal pathway [29]. In contrast, the monomeric 
α-synuclein may be transported into the cytosol directly across the 
plasma membrane. Low temperature was shown to effectively inhibit the 
internalization of fibrillar α-synuclein and oligomers, but do not affect 
the internalization of monomers. The internalization of monomeric 
α-synuclein into microglia is, however, independent on the classical 
pathways, rather dependent on the lipid raft in the plasma membrane 
[30]. The disruptors of lipid raft, such as methyl-β-cyclodextrin and 
filipin, inhibited the internalization of α-synuclein into microglia in 
a dose-dependent manner [30]. The ganglioside GM1 in the lipid raft 
may serve as the receptor of α-synuclein [30]. It has been reported that 
α-synculein binds specifically to gangioside GM1-containing small 
unilamellar vesicles [31].

Moreover, α-synculein can also be taken up by COS-7 cells via 
the dynamin-dependent endocytosis. Upon internalization, oligomer, 
not monomer and fibril, alters the process of membrane trafficking. 
For instance, oligomer of α-synculein significantly promotes the 
internalization and recycling of transferrin receptor (TfR), and 
subsequently increases the surface levels of TfR [32].

The Biological Significance of eSNCA
Neurotoxicity

eSNCA has shown the potent neurotoxicity. The A30P, E46K 
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Neuroinflammation

Neuroinflammation is a dispensable part in the pathophysiological 
process of PD. eSNCA , particularly the aggregated form, can trigger 
the neuroinflammatory response. In a primary mesencephalic neuron-
glia co-culture system, α-synuclein activated microglia and led to 
dopaminergic neurodegeneration, which was found to depend on the 
activation of NADPH oxidase and the production of reactive oxygen 
species [37].

Different signal pathways have been found in the microglia 
activation. The mitogen-activated protein (MAP) kinase pathways 
appeared to mediate the process [38]. Moreover, the activation of MAP 
kinases occurred within minutes following exposure to α-synuclein, 
suggesting that the activation of these pathways may be a receptor-
mediated event. Further study showed that CD36 may be one of possible 
receptors with which α-synuclein interacts, since knockout of CD36 
reduced the microglial activation and dampened the proinflammatory 
response to α-synuclein [39].

Some pattern recognition receptors are also involved in the 
activation of microglias. It has been established that toll-like receptor 
4 (TLR4) mediated α-synuclein-induced microglial phagocytic activity, 
pro-inflammatory cytokine release, and ROS production. Knockout of 
TLR4 suppressed the proinflammatory response and decreased ROS 
production triggered by α-synuclein [40]. Moreover, the latest study 
revealed that eSNCA oligomer can also interact with TLR2 and thus 
activate microglias [41].

[38,43]. Fellner et al. [40] reported that the C-terminus of α-synuclein 
appears to be the strongest activator of microglia as compared with the 
full length soluble or fibrillized α-synuclein.

Microglia migration is also a hallmark for the neuroinflammation. 
It is established that α-synuclein-induced microglia migrates into the 
SNpc in the 6-hydroxydopamine mouse model of PD. α-synuclein 
activates ERK1/2 and subsequently up-regulates the expression of the 
cell adhesion molecule CD44. The soluble CD44 can liberate microglia 
from the surrounding extracellular matrix for migration. The identical 
effects were also displayed in the murine microglia BV-2 cells [44].

The Extracellular α-Synuclein and Parkinson’s Disease
The finding of extracellular α-synuclein may aid in elucidating some 

pathological traits of Parkinson’s disease (PD). It has been reported that 
dopamine accelerates the α-synuclein oligomerization in intracellular 
vesicles and promotes the production of extracellular α-synuclein [46], 
which may contribute to the progressive loss of the dopaminergic 
neuronal population in the SNpc in the PD patients.

Moreover, the finding of extracellular α-synuclein may pave the 
new way for the treatment of PD. As reviewed by Park and Kim [47], 
the potentiation in the proteolytic clearance of eSNCA can inhibit the 
spreading of eSCNA and serve as a new therapeutic approach against 
PD. In addition, it has been found that antibodies against α-synuclein 
reduced α-synuclein accumulation and synaptic loss in the PD mouse 
model. And, this kind of antibodies specifically promotes microglia 
to clear eSNCA proteins through the Fcγ receptor, thereby preventing 
their toxic actions on neighboring cells [48].

Conclusion
In this review, we outlined the production and degradation of 

eSNCA and its biological significance. When excessive α-synuclein is 
accumulated in cytosol, it is secreted into the extracellular space. In the 
extracellular space, it invades into the neighboring cells and triggers 
the neuroinflammation. The finding of eSNCA not only helps us to 
understand the pathology of PD and other neurodegenerative diseases, 
and supplies new ways for the therapy of PD.
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