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Abstract

Whether an atherosclerotic plaque progresses and eventually ruptures is heavily influenced by the function of
macrophages. However, it is clear that a spectrum of macrophage phenotypes is present in the plaque, with some
exhibiting stabilizing functions. While macrophages expressing characteristic M1 and M2 markers are evident, the
disparate microenvironments of the plaque, such as regions of hemorrhage, promote other distinct macrophage
phenotypes. Crucial to plaque development and progression is macrophage exposure to accumulated modified low
density lipoproteins that leads to foam cell formation and development of the necrotic core. There are a range of
biologically active compounds in low density lipoprotein (LDL) each having some bearing on which macrophage
surface receptors are engaged and what cellular response ensues. Understanding the bidirectional interplay
between ‘cholesterol’ and macrophage phenotype will provide valuable insight into key pathways to target which
may possibly promote plaque stability by modulating macrophage function.
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Type 1 Macrophage; M2: Type 2 Macrophage; M4: CXCL4 Derived
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Stimulating Factor; MERTK: MER proto-oncogene, Tyrosine Kinase;
Mhem: Heme Directed Macrophage; MIP-2: Macrophage
Inflammatory Protein-2; mmLDL: Minimally Modified Oxidized LDL;
Mox: Oxidised Phospholipid Derived Macrophages; MR: Mannose
Receptor; NLRP3: NLR Family, Pyrin Domain containing 3; Nrf2:
Nuclear Factor (erythroid-derived 2)-like 2; oxLDL: Oxidised LDL;
PPARγ: Peroxisome Proliferator-Activated Receptor Gamma; STAT:
Signal Transducer and Activator of Transcription; TNF: Tumour
Necrosis Factor

Introduction
Macrophages are a major cell type in the atherosclerotic plaque

which play a key role in plaque development, progression and
ultimately, rupture. An early and ongoing process in plaque
development is macrophage uptake of modified LDL (a major carrier
of cholesterol) that has accumulated in the sub-endothelial space [1,2].
This ingestion of retained lipoprotein transforms the macrophages
into foam cells [3] and an inflammatory response ensues. However,
this response is maladapted as the macrophage foam cells do not leave
but are retained within the vessel wall [2]. Foam cell accumulation,
their apoptosis and subsequent necrosis leads to development of the
necrotic core - a major contributor to plaque instability [4,5]. It is thus

important to understand the processes involved in, and outcome of,
macrophage lipoprotein uptake. This review will cover lipoprotein
uptake by the different macrophage phenotypes identified in the
plaque and, in addition, as cholesterol uptake or efflux can further
modify macrophage function, the effect of LDL and HDL on
macrophage polarization is also discussed.

Macrophage phenotypes in the atherosclerotic plaque
While macrophage polarization suggests two extremes of

phenotype, and indeed the terms M1 and M2 predominate in the
literature, it is well appreciated that there is a spectrum of macrophage
phenotypes that can be adopted with considerable plasticity between
them [6]. This is especially apparent in atherosclerosis where
monocytes, and subsequently macrophages, are exposed to an array of
factors throughout plaque initiation and progression and in the
advanced plaque. Monocyte differentiation into macrophages is
promoted by growth and survival factors, including M-CSF, GM-CSF
[7] and CXCL4 [8], with all three of these factors present in
atherosclerotic plaques [9-11]. Factors such as IFN-γ, IL-4 and IL-10,
which are known to promote M1 and M2 macrophage polarization
[12] are also evident in the plaque [13,14] and, as such, macrophages
expressing a range of M1 and M2 markers have been identified in both
murine and human plaques [15-19]. Furthermore, the advanced
plaque is complex and heterogeneous in nature, often containing
regions of intra-plaque hemorrhage (IPH). A unique phenotype of
macrophage, the Mhem (M(Hb) or HA-Mac) macrophage, forms in
these regions [20-22]. Aside from these identified forms, a range of
intermediate phenotypes may also be present. In addition, other
monocyte-derived cells (which share overlapping functions with
macrophages) are also present in the plaque, such as dendritic cells
[23,24] and fibrocytes [25].
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These various ‘polarized’ macrophage forms differ greatly in their
ability to take up oxLDL. However, oxLDL uptake itself can also alter
macrophage phenotype. The numerous bioactive compounds present
in LDL, and their modified forms, exert specific effects. Oxidized
phospholipids, for example, promote formation of the Mox
macrophage, which is distinct from the M1 and M2 macrophage forms
[26]. Cholesterol is also present in the plaque in crystalline form.
Cholesterol crystals activate different and distinct pathways in the
macrophages. Aside from cholesterol uptake, its efflux also influences
macrophage phenotype, with emerging studies addressing how HDL
may impact on the M1/M2 nature of macrophages in the plaque.

Effect of Macrophage Phenotype on ‘Cholesterol’
Uptake

M-Macs/GM-Macs and the M4 macrophage
Monocyte to macrophage differentiation is promoted by exposure

of monocytes to macrophage colony stimulating factor (M-CSF),
granulocyte macrophage colony stimulating factor (GM-CSF) or
CXCL4 [7,8] and the macrophages formed have been described as M-
Mac, GM-Mac [27] and M4 [28], respectively. It should be noted,
however, that GM-CSF and M-CSF cultured macrophages have also
been called M1 or M2 [29], but such designation is not recommended
in the current nomenclature guidelines [30]. It is noted, though, that
M-CSF stimulation induces expression of a substantial portion of the
M2 transcriptome [31]. Furthermore, M-CSF differentiated
macrophages have also been called M0 or resting macrophages [32]. In
vitro, upon LPS stimulation, GM-CSF derived macrophages produce
higher levels of inflammatory cytokines than their M-CSF derived
counterparts [29,33]. Furthermore, M-CSF derived macrophages
express higher levels of the M2 marker CD163 and the anti-
inflammatory factor Krüppel-like factor (KLF)2 [29]. Though the GM-
CSF derived macrophages are more inflammatory in nature [33], they
accumulate less oxLDL than the M-CSF derived macrophages [29].
This may be attributed to M-CSF upregulation of CD36 [29], a
receptor for oxLDL [34,35]. Conversely, GM-CSF has been found to
upregulate expression of genes that promote reverse cholesterol
transport (PPARγ, LXR-α and ABCG1 [27]). M-Macs retain CD14,
while this is down-regulated in GM-Macs, which exclusively express
25F9 [27]. In human coronary atherosclerotic plaques, CD68+

macrophages staining both with, and without, CD14 are evident with
CD14+ CD68+ macrophages prevalent in the lesion, whereas the
CD14- CD68+ macrophages were found in areas devoid of disease [27].

CXCL4 derived macrophages (M4) lack CD163. Indeed,
macrophages lacking CD163 are evident in the plaque [16], though
these could also be M1 macrophages. The suppression of CD163 by
CXCL4 could not be recovered by subsequent incubation with M-CSF
or IL-10. Furthermore, the loss of CD163 was accompanied by an
inability of hemoglobin-haptoglobin (Hb:Hp) to induce
hemoxygenase 1 (HO-1) expression [16]. Transcriptome analysis and
functional studies show that M4 macrophages are distinct from M-
CSF differentiated as well as M1 and M2 polarized macrophages [36].
CD36 expression is lower on M4 macrophages than M-CSF
differentiated macrophages and, accordingly, they have less
intracellular cholesterol upon incubation with oxLDL [36]. The
increased ABCG1 gene expression suggests that this may be through
both reduced lipid uptake and increased efflux [36]. It is not clear
whether M4 macrophages are predominantly pro- or anti-atherogenic
[36]. However, as CXCL4 deficiency results in decreased

atherosclerotic plaque burden [37], M4 macrophages may play a pro-
atherosclerotic role [16].

M1 and M2 macrophages
After macrophage differentiation, exposure to cytokines such as

IFN-γ and IL-4 primes the cells to adopt classical (M1) and alternative
(M2) phenotypes, respectively [12]. The NF-κB pathway and signal
transducer and activator of transcription (STAT) 1 direct M1
polarization [38-40], while the transcription factors Krüppel-like
factor , peroxisome proliferator activated receptor-γ (PPARγ) and
STAT6 [38-40] drive M2a macrophages. Exposure to IL-10 promotes
M2c macrophages through STAT3 [41].

The lipid handling capacities of the M1 and M2 macrophages have
been examined in vitro and the presence of M1 and M2 foam cells
examined in both mouse and human plaques. Though M2a
macrophages take up less lipid than resting macrophages [18], when
M2a (IL-4), M2b(IC) and M2c (IL-10) were compared with M1
macrophages (M-CSF with LPS plus IFN-γ) they were found to take
up more lipid [42]. (Although it is noted that monocytes in this later
study were from obese subjects with diabetes). That said, IL-4, IL-10
and immunocomplex upregulate expression of CD36 and SR-A1
relative to IFN-γ [42] and separately, IFN-γ has been shown to reduce
CD36 expression [43] which is consistent with the greater lipid uptake
by M2, compared to M1, macrophages. As M2 (a,b and c)
macrophages do not differ in apolipoprotein A1 (ApoA1) or HDL-
stimulated cholesterol efflux compared with M1 macrophages (M-CSF
with LPS plus IFN-γ), then the net increase in foam cell formation
may primarily be due to cholesterol uptake [42]. However, in healthy
controls, ApoA1- and HDL3-cholesterol efflux was found to be lower
in M2a compared to resting macrophages [18]. Furthermore, the level
of expression of both the ABCA1 and ApoE genes was lower in M2a
compared to M1 and resting macrophages [18], suggesting that lower
cholesterol efflux does contribute to increased cholesterol
accumulation in M2 macrophages. Consistent with this increased lipid
uptake, mannose receptor (MR: an M2 marker) positive macrophages
were found localized more centrally within the plaque, in the ApoE-/-

mouse, compared to M1 macrophages, and they exhibited a higher
level of ADRP (a marker of lipid uptake) expression [42].

In human plaques, although the presence of inflammatory
macrophages has long been recognized, the first identification of M2
macrophages was by Bouhlel in 2007 [15]. In contrast to the murine
model, human M2 macrophages (MR+) have been found to be present
in more stable regions of the plaque distant from the core [15,18]. MR
+ foam cells that did form were reported to contain smaller lipid
droplets than M1 foam cells [18] and, as such, foam cells are thought
to primarily be M1 derived [18]. Of note, we have found that
expression of the M2 markers MR (also known as CD206) and CD163
differs in carotid plaques, with many sections lacking MR but
containing CD163 and then at a level comparable to that of the M1
markers, CD64 and CD86 [19]. Furthermore, when the M2 markers
(CD163, MR) were present they, not just M1 (CD64 and CD86)
markers, could be found on foam cells associated with the core. In
addition, both M1 and M2 markers were found in the cap, primarily
on spindle shaped cells [19].

The discrepancies between the murine and human data may reflect
a difference in the stage of atherosclerosis examined, for although M2
foam cells have been found to predominate in young ApoE-/- mice, M1
foam cells are more prevalent in older mice [17]. Whether M2
macrophages and their foam cell forms predominate in the early
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human atherosclerotic plaque is not clear, but with M-CSF promoting
expression of M2 related genes [31], then M2 macrophages (and
subsequently M2 derived foam cells) may arise early in plaque
development. Cholesterol uptake promotes ER stress which triggers
the unfolded protein response [42,44]. Since M2 (IL-13 derived) foam
cells are more sensitive to the unfolded protein response than other
forms of macrophages [45], the lack of M2 macrophages in advanced
human plaque may, in part, stem from increased cell death.
Furthermore, during plaque progression the switch from an M2 to an
M1 promoting environment may both impede apoptotic cell clearance
(as M2 cells have greater capacity for efferocytosis) [46] and promote
the formation of M1 macrophages/foam cells.

M1 macrophages are thought to be detrimental to plaque stability as
aside from contributing to formation of the necrotic core, they
contribute to thinning of the fibrous cap. M1 macrophages are found
in the rupture-prone shoulder regions of the plaque [47] and there is
an inverse relationship between the level of M1 (CD86), but not M2
(CD163), with carotid plaque cap thickness [19]. Similarly, levels of
CD68 and CD11c (M1) are higher, while levels of the M2 markers
(CD163 and MR) are lower in symptomatic patients compared to
asymptomatic patients [48]. These findings are consistent with known
role of M1 macrophages in tissue destruction [6]. M2 macrophages are
considered athero-protective as they (CD163+ and CD206+

macrophages) produce collagen I in the carotid plaque [19]. This is
consistent with their known role in tissue repair.

Mhem macrophages
Intraplaque hemorrhage is a common feature in the advanced

plaque and its presence is associated with plaque progression [49]. Red
blood cells have cholesterol enriched membranes which can result in
increased cholesterol deposition and subsequent enlargement of the
core [50]. Furthermore, RBC lysis releases hemoglobin. Heme and
hemoglobin are strong oxidizers which could potentially increase lipid
oxidation [51]. Hemoglobin is bound by haptoglobin to form the
Hb:Hp complex [52] and macrophages scavenge this complex through
CD163-the Hb:Hp receptor [52]. This results in the release of IL-10,
which forms an autocrine loop, stimulating further expression of
CD163 [22]. Such IPH localized macrophages are known as Mhem
macrophages [20]). They are CD68posCD163highHLADRlow and thus
distinct from conventional macrophage foam cells which are
CD68posCD163lowHLADRhigh [22]. In vitro studies show that Hb:Hp
driven adoption of the Mhem phenotype is IL-10 dependent [22]
which suggests that the Mhem macrophages are related to the M2c
form. While transcriptome analysis shows that Mhem are
distinguishable from M2 (and M1) macrophages by the expression of
ATF [20], this comparison was made between IL-4 stimulated (M2a)
but not IL-10 stimulated macrophages. However, exposure to Hb:Hp
(or heme [53]) will no doubt trigger upregulation of specific genes
which would allow distinction of these cells from M2c macrophages.

Despite iron loading (as seen by the presence of CD163/Perls
double stained cells in the plaque), the Mhem macrophages were
negative for 8oxoG, a marker of oxidant stress, rather they stained
strongly for HO-1 [22]. HO-1 breaks down hemoglobin to carbon
monoxide, biliverdin (which is rapidly converted to bilirubin) and free
iron [54] which is either used by the cell or bound by ferritin and
exported out of the cell via the iron exporter ferroportin [21]. ATF-1
induced upregulation of HO-1 enables the safe handling of iron. At the
same time, ATF-1 also promotes iron cholesterol efflux through a
LXRβ → LXRα → ABCA1 pathway [20]. As such, Mhem macrophages

are resistant to lipid loading as they have lower expression of genes
associated with lipid uptake, but higher expression of genes involved
in reverse cholesterol transport [20,21]. In the plaque, Mhem
macrophages are found distant from the core and do not take up lipid
[20-22]. Indeed, CD163+ macrophages are reported to be absent from
lesions that have a lipid core but no hemorrhage [22].

The anti-inflammatory functions of the Mhem form are athero-
protective. Their occurrence in IPH, which is associated with plaque
progression, is thought to be a case of an adaptive response which is
‘too little too late’ [55]. Moreover, formation of the full Mhem state
may be inhibited in the plaque as IFN-γ and LPS can prevent Mhem
formation [22]. Furthermore, it has been shown in thrombi from acute
coronary syndrome (ACS) patients, with diabetes or insulin resistance,
that IL-10 production is impaired. This would further limit the ability
of the Mhem to stabilize the plaque [56].

Effect of ‘Cholesterol’ on Macrophage Polarization
While variation in lipid handling by different macrophage

phenotypes is evident, the reverse is also apparent, that lipid handling
alters macrophage polarization. LDL is the major carrier of cholesterol,
and its modification and uptake by macrophages leads to foam cell
formation in the atherosclerotic plaque. Efflux of cholesterol from
macrophages, i.e. reverse cholesterol transport, is mediated by HDL or
its apolipoproteins, in particular, ApoA1 [57]. Aside from their role in
cholesterol handling, the pro- and anti- inflammatory impacts of LDL
and HDL on macrophages in the plaque may significantly influence
macrophage contribution to overall plaque stability.

LDL
LDL is a major risk factor for atherosclerosis. Its accumulation and

oxidation within the vessel wall are crucial events in plaque formation
[2]. The importance of LDL in atherosclerosis development is clearly
evident in Familial Hypercholesterolemia (FH) where the absence
(homozygous FH) or reduction (heterozygous FH) of the LDL
receptor (which removes LDL from the circulation) or its functions
results in accelerated atherosclerosis development [58]. Strong
evidence from many studies has demonstrated that the reduction of
LDL by statin therapy is associated with reduced occurrence of
vascular events [59,60]. However, despite the known detrimental role
of oxLDL in atherosclerosis, it has been described to have both pro-
and anti-inflammatory effects, including on macrophages [61-66].
Such discrepancies may arise from the heterogeneous nature of the
modified LDL preparations used in culture. The effect of LDL uptake
on macrophage phenotype depends on the degree, and form of, LDL
modification [67]. For example, Miller et al. demonstrated that
minimally modified LDL (mmLDL), but not LDL or oxLDL,
stimulation of macrophages induced early expression of mRNA for
macrophage inflammatory protein-2 (MIP-2), MCP-1, TNF-α and
IL-6 [68]. MmLDL, is not sufficiently modified to be taken up by
scavenger receptors but is recognized by LDL receptors and TLR4
[67,69]. Moderately oxidized LDL is taken up by Lox 1 and CD36, with
more extensive oxidation required for SRA-1 engagement [67]. There
are numerous biologically active compounds present in modified LDL
such as modification in phospholipids, sphingolipid and free fatty acid
products, oxysterols, and ApoB [67]. Their modification impacts
which receptors are engaged and what cellular response occurs. For
example, CD36 recognizes oxidized phospholipids; TLR-4 recognizes
oxidized cholesteryl esters and SRAI/II recognizes modifications of the
ApoB protein [67]. For a comprehensive review see Levitan [67]. The
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pro-inflammatory effects of oxLDL are mediated by NF-κB, AP-1,
STAT1/, NFAT, SP-1 and HF-1[67] as well as a down regulation of
KLF2 [29]. The anti-inflammatory effects of oxLDL arise from
inhibition of NF-κB [6,65] and stimulation of PPARs and Nrf2 [42,67].

The cellular response of macrophages to oxLDL may also be
dependent, in part, on the phenotype of the macrophage prior to
oxLDL interaction. While GM-CSF derived macrophages produce
higher levels of IL-6 and MCP-1 than M-CSF derived macrophages
upon LPS stimulation, pre-exposure to oxLDL (prior to LPS
stimulation) resulted in M-CSF derived macrophages producing
higher levels of IL-6, IL-8 and MCP-1 (equivalent to that produced by
LPS stimulated GM-CSF macrophages) and lower production of IL-10
compared to M-CSF alone. In contrast, no change in cytokine
expression for GM-CSF derived macrophages was seen [29]. In a
separate study, GM-CSF induced human macrophages exposed to
oxLDL were shown to have an inhibited IL-1 and TNFα response to
LPS [63]. Furthermore, M1, but not M2, macrophages exposed to
oxLDL upregulated growth factor mediated NF-κB signaling pathways
[70].

Most of our understanding of the effect of LDL/oxLDL on
macrophage polarization comes from in vitro studies. The degree and
form of LDL modification in vivo is not clear [71]. Interestingly, foam
cell formation in peritoneal macrophages of an LDLR-/- mouse fed a
high cholesterol/high fat diet was associated with a suppression rather
than activation of inflammatory gene expression [72], suggesting that
macrophage polarization to an M1 phenotype in the plaque arises
from extrinsic pro-inflammatory signals. For example, foam cell
necrosis is one of the factors that can stimulate an inflammatory
response [5]. In addition, the necrotic core of atherosclerotic plaques is
hypoxic which would be expected to promote an M1 phenotype as
hypoxia switches the metabolism of macrophages to an anaerobic
glycolytic pathway [73], the pathway used by M1 macrophages.
Furthermore, succinate (a Krebs cycle intermediate) induces HIF1α
expression which promotes expression of pro-inflammatory genes
[74]. However, a separate study, using the Reversa mouse (a mouse in
which hypercholesterolemia can be conditionally reversed [75]),
suggests that LDL may stimulate M1 polarization, as a reduction of
LDL resulted in stabilization of the plaque with decreased total
macrophages (CD68 and Moma+) but increased gene expression of
M2 markers such as Arg1, MR, CD163, C-lectin and FIZZ1 [76].
Whether this relates to M1 to M2 skewing, or merely an efflux of M1
macrophages is not clear.

Mox Macrophages
Of the different components of oxLDL, the effect of oxidized

phospholipids on macrophage polarization has been specifically
examined. Oxidized phospholipids are major contributors to oxLDL
binding to scavenger receptors [77], in particular CD36 [78].
Incubation of M1 or M2 macrophages with oxidized phospholipids
results in the formation of macrophages that are different from both
the M1 and M2 phenotypes. This distinct phenotype has been termed
the Mox macrophage [26]. It lacks CD163 which is characteristic of
M2 and Mhem macrophages, however, like the Mhem macrophages,
Mox express HO-1 [26]. Mox marker gene expression is largely
mediated by Nrf2 (a redox-sensitive transcription factor). Whether the
Mox macrophage is inflammatory/pro-atherosclerotic is not
completely clear. While macrophage (MSCF or GM-CSF derived)
incubation with oxidized phospholipids results in the upregulation of
IL-1β, the incubation of M1 macrophages with oxidized phospholipids

results in the down regulation of IL-1β, iNOS, TNFα and MCP-1 [26].
Furthermore, HO-1 is athero-protective as discussed above. However,
Mox macrophages derived from M2 macrophages have reduced
arginase 1 (Arg1: M2 marker) expression [26]. The ability of oxidized
phospholipids to stimulate or inhibit inflammation is known to be
dependent on the biological situation [79] and this appears to be the
case with different macrophage phenotypes. Though Mox
macrophages have been identified in the mouse, their identification in
human plaques is yet to be determined.

Cholesterol crystals
Cholesterol crystals are a major feature of advanced plaques where

they are readily identified by the presence of cholesterol clefts (left
after tissue processing). However, their formation starts early in the
plaque, even in fatty streaks [80]. Minute crystals are evident within
two weeks of high cholesterol feeding in the ApoE-/- mouse which
coincides with the appearance of inflammatory cells [81]. Although
cholesterol crystals are primarily evident as extracellular deposits in
the necrotic core, where they are proposed to arise from lipid
deposition or RBC death, they can also form within macrophages
themselves [81,82]. Cholesterol crystals induce NLRP3 inflammasome
activation leading to the release of the inflammatory cytokines IL-1β
and IL-18 in both human [83] and murine [81] macrophages.

HDL
A low level of HDL, both as reduced ApoA1 and as HDL particle

cholesterol content, is associated with an increased risk of
cardiovascular diseases and associated clinical events [84]. As such,
HDL is considered athero-protective [85]. Indeed, infusion of HDL or
ApoA1 in mouse models leads to decreased plaque size [86]. HDL/
ApoA1 are known to exert anti-inflammatory actions which, while
initially attributed primarily to cholesterol transport, can also be direct
effects on cells [87]. Injection of ApoA1 into the ApoE-/- mouse leads
to a decrease in total plaque macrophage content with a significant
reduction in the expression of M1 markers (IL-1β and MCP-1) and an
increase in the expression of M2 markers (Arg1 and MR) [88]. Of
note, the injected ApoA1 was almost completely incorporated into
HDL. Aortic segments transplanted from HDL-deficient (ApoE-/-)
mice into mice with normal HDL levels (i.e. wild type mice) showed
increased M2 markers (FIZZ1, Arg1, CD163, MR) and decreased
inflammatory markers (MCP-1, TNFα) [89]. These findings suggest
that HDL (and ApoA1) promote an M2 phenotype in vivo, but do not
provide information regarding whether this is a direct effect of HDL
on macrophages. To understand direct interactions, in vitro work has
been conducted. Incubation of mouse bone marrow derived
macrophages with HDL led to increased FIZZ1 and Arg1 expression
and suppression of resting and IFNγ-induced iNOS, TNFα and IL-6,
suggesting a direct effect of HDL in promoting an M2 phenotype [90].
This was proposed to be via JAK/STAT pathways, specifically JAK1 or
JAK 2 interacting with STAT6 [90]. Macrophages incubated with
ApoA1 had decreased LPS-stimulated production of IL-1β, IL-6 and
TNFα, with this anti-inflammatory effect attributed to the interaction
between ApoA1 and ABCA1, which subsequently activated the JAK2/
STAT3 pathway [91]. As well as altering macrophage polarization,
HDL and ApoA1 have been shown to decrease TNFα-mediated
adhesion of monocytes to endothelial cells in vitro, thus showing
further anti-inflammatory effects [92].

In humans, administration of reconstituted HDL leads to improved
plaque composition and even regression [93,94]. However,
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examination of effects of HDL at the cellular level in humans becomes
difficult as the plaque cannot be readily removed for analysis. As such,
work examining the anti-inflammatory effects of HDL in humans
predominantly consists of ex vivo and in vitro studies. Infusion of
recombinant HDL led to decreases in inflammatory parameters such
as reduced CD11b expression on monocytes [95]. Anti-inflammatory
changes such as this suggest that high HDL promotes a shift towards
an M2 macrophage phenotype and conversely, a shift away from an
M2 phenotype with lower HDL levels. In contradiction to this,
monocytes isolated from patients with low HDL were equally able to
become M2 macrophages under IL-4 stimulation as those from
patients with normal HDL levels, suggesting low HDL levels do not
lead to reduced formation of M2 macrophages [96]. However, the in
vivo environment is much more complex, with other factors
influencing macrophage polarization coming into play, as such the
possibility of low-HDL patients having reduced numbers of, or
capacity to form, M2 macrophages cannot yet be ruled out. While
human monocyte-derived macrophages incubated with HDL did not
show increased gene expression of M2 polarisation markers (MR,
CD200R, F13A1, Stabilin-1, IL1RA, CD163, IL-10, PPARγ) [96], the
HDL concentrations used were low and it is possible that more
physiological concentrations of HDL could lead to changes in marker
expression. More in vitro work, similar to that done for mice, may
determine whether, and how, HDL and its components affect
macrophage polarization and function. The mechanisms by which
changes in macrophage polarization occur in mice may also be active
in humans.

Conclusion
The microenvironment influences the phenotype of macrophages

in the atherosclerotic plaque and, as such, a range of macrophage
phenotypes are present. One key factor in their environment is lipid,
in particular oxLDL with its bioactive components and cholesterol
crystals. A bidirectional relationship exists between macrophages and
cholesterol where the phenotype of the macrophage affects its ability
to handle lipid. Conversely, oxLDL or interaction with cholesterol
crystals influences macrophage phenotype. However, whether the
response generated promotes or suppresses inflammation depends on
the degree and form of LDL modification. This complex interplay,
both pro- and anti-inflammatory, is clearly swayed (albeit by other
factors in the milieu as well) towards a pro-atherogenic process in
cardiovascular diseases. However, mouse models in particular
demonstrate that the atherogenic balance can be switched to promote
plaque regression accompanied by macrophage polarization to an M2
macrophage. This suggests that despite the complexity of the plaque,
key figures such as HDL and PPARs may be able to delay and reverse
atherosclerosis development, with this being, in part, through
modulating macrophage polarization.
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