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Sugammadex, a γ-cyclodextrin that encapsulates selectively 
steroidal neuromuscular blocking agents, such as rocuronium 
or vecuronium, has changed the face of clinical neuromuscular 
pharmacology. Sugammadex allows a rapid reversal of muscle 
paralysis. After its injection, a train-of-four ratio >0.9 is obtained in less 
than 5 minutes in all patients, whatever the degree of muscle paralysis 
and even when anesthesia is maintained with halogenated agents. 
Sugammadex in blood-brain barrier penetration is poor (<3% in rats). 
However the blood brain barrier permeability can be altered under 
different conditions (i.e. neurodegenerative diseases, trauma, ischemia, 
infections, or immature nervous system). We show here that clinically 
relevant sugammadex concentrations cause apoptotic neuron death in 
primary cultures.

A Cochrane systematic review including 18 randomized controlled 
trials (with a total of 1321 patients) on the efficacy and Safety of 
Sugammadex (SUG) concluded that it was more effective than placebo 
(no medication) or neostigmine in reversing muscle relaxation caused 
by Neuromuscular Blockade (NMB) during surgery and is relatively 
safe. Serious complications occurred in less than 1% of the patients 
who received SUG [1]. Reported side effects for SUG included cough, 
dry mouth, temperature changes, parasomia, paresthesia, movement 
during surgery, mild erythemia, abdominal discomfort, tachycardia, 
bradycardia, dizziness, increased creatinine phosphokinase, and 
increased B2 microglobinuria [2]. Pooled preclinical safety data 
obtained from the US FDA briefing document [3]; and the European 
Medicines Agency scientific document [4] reveal no special hazard 
for humans based on conventional studies of safety pharmacology, 
repeated dose toxicity, genotoxicity and toxicity to reproduction, 
local tolerance or compatibility with blood. Potential kidney and lung 
toxicity of cyclodextrins, if large repeated doses are administered, must 
be also taken into account [5]. Besides, available information regarding 
SUG on special conditions/population, including renal impairment, 
elderly patients, obese patients, and pediatric population is really 
limited [3,4,6].

SUG exhibits a very low transfer across the Blood-Brain Barrier 
(BBB) and the placenta. Nevertheless, different clinical conditions 
imply moderate or severe alterations of the BBB integrity, i.e. 
Alzheimer [7], Parkinson [8] or multiple sclerosis [9] disease-associated 
neurodegeneration, traumatic brain/spinal cord injury [10], ischemia 
[11], meningitis [12], or immature nervous system [13]. Under these 
clinical conditions, SUG may cross the BBB in specific areas. SUG can 
act such as potential induced neuronal toxicity.

SUG causes cell death, predominantly by apoptosis, in cultured 
neurons [14,15]. Apoptosis induction associates with an alteration 
in neuronal cholesterol homeostasis [15]. In fact, neuronal death 
caused by inhibition of intracellular cholesterol trafficking has been 
shown to be caspase dependent and associated with activation of the 
mitochondrial apoptosis pathway [16]. Cholesterol is an abundant 
component of plasma membranes of eukaryotic cells and is an essential 
regulator of membrane fluidity, permeability, receptor function, and 
ion channel activity [17].

Nevertheless cholesterol accumulation may be a double edge sword 

since, as other reports suggest, excessive accumulation of cholesterol in 
mitochondria may be a key step in promoting e.g. Alzheimer disease 
progression [18]. In this scenario U18666A, a cholesterol transport-
inhibiting agent, leads to high intracellular cholesterol accumulation 
in primary cortical neurons, activation of caspases and calpains, 
hyperphosphorylation of tau, and apoptosis [19]. 

The potential association of SUG-induced alteration in cholesterol 
homeostasis with oxidative stress and apoptosis activation, the fact 
that resistance/sensitivity to oxidative stress may likely differ between 
brain regions and neuronal cell types, potential neurons-astrocytes 
interactions, as well as modulation by pathological mechanisms such as 
inflammation, all represent new research windows that deserve further 
studies.
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