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Introduction
Na+/K+-ATPase is an integral membrane protein that is responsible 

for the ATP-dependent transport of Na+ and K+ across the cell membrane 
[1]. This transport generates the electrochemical gradients that are 
required for electrical excitability, cellular uptake of ions, nutrients 
and neurotransmitters, and regulation of cell volume and intracellular 
pH. Na+/K+-ATPase consists of three non-covalently linked subunits, 
designated as α, β and γ. The catalytic α subunit, with a molecular 
weight of approximately 113 kDa, contains the binding sites for Na+, 
K+, ATP, phosphate, and specific cardiac glycoside inhibitors. The β 
subunit (35~55 kDa) is composed of a short N-terminal cytoplasmic 
tail, a transmembrane segment and a large extracellular C terminal 
domain [2,3]. Recent reports on crystal structures of Na+/K+-ATPase 
reveal the overall topology at 2.4~4.6 Å resolution [4-7]. The role of the 
β subunit is less well defined but direct and indirect evidence suggests a 
role in maturation, intracellular transport to the plasma membrane and 
stabilization of the K+-occluded intermediate [8,9]. The small γ subunit 
(7 kDa), also called FXYD protein, regulates activity and also stabilizes 
the enzyme [10,11]. Na+/K+-ATPase is expressed in several isozymes, 
and in mammalian cells, four α isoforms (α1, α2, α3 and α4) and three 
β isoforms (β1, β2 and β3) have been identified [12-14]. Both α and β 
isoforms of Na+/K+-ATPase exhibit tissue-specific expression patterns. 
The α1 isoform in association with the β1 subunit is found in almost 
every tissue and α1β1 is the principal isozyme of the kidney, a tissue 
often used as a source of Na+/K+-ATPase [12].

The β subunit of Na+/K+-ATPase also plays a role in cell-cell adhesion 
[15]. The β2 subunit was first described as an adhesion molecule on glia 
(AMOG) in rat brain [16]. Na+/K+-ATPase plays a crucial role in the 
intercellular junction formation in Drosophila tracheal epithelium in 
an isoform-specific manner [17-19]. The β1 subunit of Na+/K+-ATPase 
is necessary for normal intercellular adhesion in MDCK cells, a cell 
line with distil renal tubule characteristics [20,21]. These functions of 

the β subunit may be partly related to the fact that it is N-glycosylated. 
Basigin (HAb18G/CD147), important in neuron-glia interactions 
[22], binds to the oligomannosidic carbohydrates expressed on the β2 
subunit of mouse brain Na+/K+-ATPase (AOMG) [23]. MDCK cells 
expressing an unglycosylated mutant of the Na+/K+-ATPase β1 subunit 
form cell-cell contacts more slowly compared with non-transfected 
MDCK cells [20]. A decrease of N-glycan branching on the β1 
subunit in MDCK cells increases paracellular permeability of MDCK 
cell monolayers [24], suggesting that changes in the structure of the 
N-glycans affects intercellular adhesion. Kitamura et al. [25] report that
mouse Na+/K+-ATPase β1 subunit is a potassium-dependent lectin that
binds GlcNAc-terminating oligosaccharides, which may be involved in
neural cell interactions. N-glycosylation on the β1 subunit of mouse
Na+/K+-ATPase is required for binding to GlcNAc-agarose [25].

Information on carbohydrate structure of Na+/K+-ATPase comes 
mostly from lectin-binding analyses. Na+/K+-ATPases from dog, 
lamb and rat kidney bind to wheat germ agglutinin (WGA) but not 
to Concanavalin A (ConA), lectins specific for N-acetylglucosamine 
residues and high mannose type glycans, respectively [26-28]. Tissue-
specific glycosylation was reported for Na+/K+-ATPases from brain 
(human, rabbit and rat) and kidney (human, rabbit, rat, pig and dog) 
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Abstract
Na+/K+-ATPase is a membrane glycoprotein composed of α, β, and γ subunits, generating ion gradients across 

plasma membranes. Ion pumping is mainly accomplished by the α subunit, while the glycosylated β subunit binds tightly 
to the α subunit to assemble the pump and plays an essential role in the stabilization and maturation of Na+/K+-ATPase. 
Accumulating evidence suggests that the N-glycans of the β subunit contribute to cell-cell interaction and the tightness 
of cell contacts is modulated by N-glycan branching. However, N-glycan function is not fully understood due to a lack of 
detailed information on the oligosaccharide structure. We, here, perform glycosylation profiling of the N-glycans attached 
to pig kidney Na+/K+-ATPase in order to better understand the mechanism of Na+/K+-ATPase-mediated cell adhesion.

We purified Na+/K+-ATPase from pig kidney outer medulla to homogeneity and solubilized it with the detergent C12E8. 
The enzyme thus obtained was identified as α1β1 subtype by LC-MS/MS analysis of tryptic digests. During the course 
of MS analysis, we found that Lys456 of the α subunit was partially modified with 4-hydroxynonenal, an aldehydric lipid 
peroxidation product. Three N-glycosylation sites on the β1 subunit were confirmed to be fully occupied by time course 
analysis of enzymatic deglycosylation monitored by SDS-PAGE. HPLC profiling of pyridylaminated oligosaccharides 
derived from Na+/K+-ATPase showed that high-mannose type oligosaccharides predominate while most of the less 
abundant complex-type oligosaccharides are capped with galactose residues. No glycans could be detected on the 
four consensus N-glycosylation sites on the α1 subunit. We briefly discuss the possibility that oligomerization of Na+/K+-
ATPase via β-β interactions assembles the N-glycans and promotes cell-cell adhesion.
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by use of Datura stramonium aggulutinin (DSA) and Galanthus nivalis 
aggulutinin (GNA), which bind lactosamine and terminal mannose 
groups, respectively [29,30]. It is well-established that N-glycans 
are attached to the β subunit, while the α subunit is considered to 
be non-glycosylated. Some groups, however, maintain that there 
is glycosylation of the α subunit [29-35], but the issue remains 
controversial on account of uncertainty regarding the purity of the 
various preparations. Sialylated glycans are reported to be present on 
the β subunit of lamb [33], dog [26,36,37] and rabbit kidney [38]. Mass 
spectrometric analysis of the major oligosaccharides at each of the 
three N-glycosylation sites in the β subunit of lamb and dog kidney 
Na+/K+-ATPase [28] indicates that most glycans are tetra-antennary 
structures with or without repeating N-acetyllactosamine units on a 
single antenna or on multiple antennae. AMOG (β2 subunit of Na+/K+-
ATPase) is about 80% modified with oligomannosidic glycans according 
to an anti-oligomannose antibody study [39]. The oligomannose series 
of glycans are most abundant in a rat brain membrane preparation 
enriched in Na+/K+-ATPase while tetra-antennary glycans with up to 
four lactosaminyl units predominate in the oligosaccharides from a 
Na+/K+-ATPase-enriched kidney membrane preparation [40]. To date, 
however, a detailed structural analysis of N-glycans of highly purified 
Na+/K+-ATPase has not been performed. We therefore purified Na+/K+-
ATPase from pig kidney to homogeneity and analysed the N-glycans. 
The oligosaccharide structures are briefly discussed in terms of cell-cell 
interaction.

Materials and Methods

Enzymes

Peptide:N-glycosidase F (PNGase F) from Flavobacterium 
meningosepticum was purchased from New England BioLabs, Inc. 
Mortierella vinacea α-galactosidase, jack bean β-galacosidase and 
β-N-acetylhexosaminidase were purchased from Seikagaku Kogyo 
Co. Bovine kidney α-L-fucosidase was purchased from Sigma-Aldrich. 
Recombinant human soluble GnT-V (delta 73, Ala74-Leu741) with 
C-terminal hexahistidine tag was expressed in a baculovirus-insect 
cell system and purified by Ni2+-chelating affinity chromatography as 
described previously [41,42].

Reference oligosaccharides

Pyridylamino derivatives of α-1,6 glucose oligomers DP=3-22 
(indicating the degree of polymerization of glucose residues) and 
reference PA-oligosaccharides were purchased from Takara Bio Inc. 
and Masuda Chemical Industries Co., LTD. A reference oligosaccharide 
(Code no. 310.11) was enzymatically prepared from PA-oligosaccharide 
(Code no. 210.1) as follows. Substrate PA-oligosaccharide (1 μmol/mL) 
was dissolved in 20 mM MES buffer, pH 6.3 in the presence of human 
soluble GnT-V (130 pg/mL) and 4.2 mM UDP-GlcNAc and incubated 
for 16 h at 37°C. The product was purified with an ODS column and 
used as a reference standard.

Other chemicals

C12E8 (octaethyleneglycol n-dodecylether) was obtained from 
Nikko Chemical Co. HEPES and free acid of EDTA were products 
of Dojindo Laboratories. Borane dimethylamine complex was from 
Sigma-Aldrich. Acetonitrile, 2-aminopyridine, 2,5-hihydroxybenzoic 
acid, orcin and UDP-GlcNAc were from Wako Pure Chemical 
Industries, Ltd. Trifluoroacetic acid was from NakalaiTesque. All 
the other chemicals (special grade) were of analytical grade and used 
without further purification.

Preparation of detergent-solubilized Na+/K+-ATPase

Na+/K+-ATPase was purified from microsomes of the outer medulla 
of frozen pig kidneys according to the method of Jørgensen [43] with 
some modifications [44]. Briefly, the microsomes were treated with 
SDS at final microsomal protein and SDS concentration of 1.4 mg/
mL and 0.6 mg/mL, respectively. The sample was subjected to sucrose 
density gradient centrifugation using a Beckmann Ti-15 zonal rotor 
to obtain the Na+/K+-ATPase-enriched membrane fragments. The 
membrane fragments thus obtained were washed to remove Na+ and 
K+ contamination as described previously [45], and finally suspended 
in 20% (w/v) glycerol, 12 mM imidazole, 28 mM HEPES and pH 7.1. 
The suspension of membrane-bound enzyme was frozen and stored at 
-80°C until use. For solubilization, the membrane-bound enzyme was 
incubated in the presence of various concentrations of KCl and/or NaCl 
with C12E8 at pH 7.0 and 0°C for 5 min [44]. The final composition was 
2 mg/mL protein, 6 mg/mL C12E8, 1 mM EDTA, 10% (w/v) glycerol, 
14 mM imidazole and 22 mM HEPES. The solution was centrifuged 
at 436,000 g for 5 min at 2°C and the supernatant used within 12 h as 
the solubilized Na+/K+-ATPase enzyme. The protein concentration of 
the solubilized enzyme was determined from the absorbance at 280 nm 
using an absorption coefficient of 1.22 mg-1ml cm-1 [45]. The specific 
ATPase activity of the membrane-bound enzyme was determined at 
37°C under optimal conditions as described previously [44].

LC-MS/MS analysis of tryptic peptides of Na+/K+-ATPase

The membrane-bound Na+/K+-ATPase was dissolved at a 
concentration of 10 mg/mL in 6 M guanidinium chloride, pH 8.5 and 
incubated at 60°C for 15 min. After addition of 0.5 mM TCEP and 
0.1 mM iodoacetamide, the reaction mixture was incubated at room 
temperature for 15 min in the dark. The sample solution was diluted 
ten-fold with 100 mM NH4HCO3 buffer and incubated with 5 µg/mL of 
modified trypsin (Promega) at 37°C overnight. The solution of tryptic 
peptides was diluted ten-fold with 0.1% (v/v) TFA and subjected to 
nanoLC-Ion Trap MS system. The solution of peptide mixture was 
loaded onto Ultimate 3000 Bio-compatible nanoLC system (DIONEX 
Co.) equipped with two Pepmap100 C18 columns (guard column; 
0.3×1 mm, 5 µm, analytical column; 0.075×150 mm, 3 mm, DIONEX 
Co.). Tandemly connected C18 columns were equilibrated with 0.1% 
(v/v) formic acid and the tryptic peptides eluted with a gradient of 
acetonitrile in 0.1% (v/v) formic acid. For the MS analysis of eluted 
peptides, HCTultra ETD II system (Bruker Daltonik GmbH) was used. 
Online nanospray source was used as an ion source and Silica Tips 
(360/20 µm, New Objective) was used as an emission tip. The data were 
converted to Mascot generic file and subject to Mascot database search.

Isolation and characterization of N-glycans by HPLC

The C12E8-solubilized Na+/K+-ATPase (1.7 mg) was digested with 
75,000 units of PNGase F at 37°C for 18 h and the extent of reaction 
checked by SDS-PAGE. To remove protein and detergent, the reaction 
mixture was applied to Sep-Pack cartridges (Waters) according to the 
manufacturers’ instructions. Flow-through fractions including released 
oligosaccharides were collected. Reducing ends of the oligosaccharides 
were then derivatized with 2-aminopyridine under the condition 
described previously [46]. The resultant pyridylamino (PA)-glycans 
were first purified by gel filtration on a Sephadex G-15 column (1.0×40 
cm, GE Healthcare). Appropriate fractions were then purified on a 
LaChromElite HPLC system (Hitachi, Japan) under conditions reported 
previously [47,48]. Three separate columns were used, firstly a TSK-gel 
DEAE-5PW column (7.5 mm×7.5 cm, Tosoh, Tokyo, Japan), then a 
TSK-gel Amide-80 column (4.6 mm×25 cm, Tosoh), and finally a Shim-
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pack HRC-ODS column (6.0 mm×15 cm, Shimadzu, Kyoto, Japan). 
Elution times of the individual peaks from the amide-silica and ODS 
columns were normalized with respect to the PA-derivatized  isomalto 
oligosaccharides with degree of polymerization 3-22, and reported in 
glucose units (GU). Thus, a given compound analyzed by these two 
columns provided a unique set of GU values, which corresponded to 
coordinates of the 2D HPLC maps. PA-oligosaccharides derived from 
Na+/K+-ATPase were identified by comparison with the coordinates of 
~500 reference PA-oligosaccharides in a web application, GALAXY 
(http://www.glycoanalysis.info/) [49] and with the data in the literature 
[50]. A sample PA-oligosaccharide and a reference PA-oligosaccharide 
were co-injected on the columns to confirm their identities. PA-
oligosaccharides were detected by fluorescence using excitation and 
emission at 320 and 400 nm, respectively.

Mass spectrometric analysis of PA-glycans
PA-oligosaccharides were subjected to matrix-assisted laser 

desorption/ionization time-of flight mass spectrometric (MALDI-
TOF-MS) analysis. Ten mg of 2,5-dihydroxybenzoic acid (Wako) was 
dissolved in 1:1 (v/v) of water/acetonitrile (1 mL) and used as a matrix 
solution. One microliter of sample solution was mixed on the target 
spot of a plate with 1µL of matrix solution and then allowed to air-
dry. MALDI-TOF-MS data were acquired in a positive mode using 
AXIMA-CFR (Shimadzu) operated in the linear mode.

Exoglycosidase digestion of PA-glycans
Each PA-glycan from Na+/K+-ATPase was digested with 

exoglycosidases (α-fucosidase, β-galactosidase, or β-N-acetyl 
hexosaminidase) under conditions described below. PA-oligosaccharide 
(1-10 pmol) was dissolved in 20 µL of 50 mM sodium phosphate buffer 
and glycosidase reactions were performed at each condition (α-L-
fucosidase 15 mU, pH 5.8 at 37°C for 16 h; α-galactosidase 0.5U, pH 
5.9 at 37°C for 16 h; β-galactosidase 0.1 U, pH 3.5 at 37°C for 16 h). 
Reactions were checked by HPLC and MALDI-TOF-MS spectrometry.

Results
Purification and characterization of Na+/K+-ATPase from pig 
kidney

It is essential to use homogeneous protein for the characterization 
of post-translational modifications of Na+/K+-ATPase. We purified 
Na+/K+-ATPase from pig kidney outer medulla to homogeneity and 
the typical ATPase activity of the purified enzyme was 29~35 µmol Pi/
min/mg protein at 37°C (see Materials and Methods). The purity of 
solubilized Na+/K+-ATPase was checked by SDS-PAGE (Figure 1, lane 
2). Polypeptide bands corresponding to the α (Mr = 100,000) and β 
(Mr = 60,000) subunits of the Na+/K+-ATPase were evident. The band 
originating from the γ subunit (Mr=7,000) was not seen presumably 
due to its low molecular weight.

In order to determine the isoform of purified pig kidney Na+/K+-
ATPase, we conducted LC-MS/MS analysis of a tryptic digest. Mass 
spectrometric analysis clearly showed that the isoform of the Na+/
K+-ATPase is α1β1, and the sequence coverage is 51% for α subunit 
and 38% for β subunit (Figure 2). Ser723Leu/Ile substitution in the α1 
subunit was found in CID-MS/MS spectrum of a peptide spanning from 
706 to 724 (Figure 3A). Leu723 of the α1 subunit has been previously 
reported [51] and annotated as a sequence conflict in the UniProt 
database (P05024). CID-MS/MS analysis of a peptide from 444 to 456 
revealed that Lys456 was partially modified with 4-hydroxynonenal 
(HNE) (Figure 3B), an aldehyde produced from the peroxidation of ω-6 
polyunsaturated fatty acids [52]. From the chromatographic analysis of 

the peptide (444-456), 5% of the Lys456 was modified (Figures 3C and 
3D). α1 Subunit of pig Na+/K+-ATPase has four consensus sites (Asn-
X-Ser/Thr) for glycosylation but none were modified. Mammalian 
β1 isoform has three N-glycosylation sites and all have been reported 
to be glycosylated in the β1 isoform of dog kidney [28,34,37], lamb 
kidney [28] and chick sensory neuron [53]. We could not detect the 
glycosylated peptides in the mass spectra presumably due to insufficient 
trypsin cleavage of the corresponding regions. To confirm that the 
three N-glycosylation sites are modified, we analyzed the time-course 
of PNGase F-treatment by SDS-PAGE (Figure 1, lanes 3-6). Increasing 
reaction time resulted in the progressive reduction of the apparent 
molecular weight of the β subunit without affecting the mobility of the 
α subunit. These results showed that the β1 subunit of pig kidney Na+/
K+-ATPase is fully modified with three N-glycans while the α subunit 
is not N-glycosylated.

Separation and identification of oligosaccharides by DEAE, 
amide and ODS columns

In order to obtain information on the structure of the N-glycans, 
the reducing ends of the glycans released from pig kidney Na+/K+-
ATPase were fluorescently labeled with 2-aminopyridine (PA). Figure 
4A shows the elution profile of the derived PA-glycans on a DEAE-
5PW anion-exchange column. Most PA-glycans eluted in the void 
volume, indicating that neutral oligosaccharides predominate and 
sialyloligosaccharides are less abundant. The void fraction from the 
DEAE column was then applied to an amide column and the elution 
profile is shown in Figure 4B. Each peak detected on the amide column 
(peaks 1-10) was collected and reapplied to an ODS column. The 
elution profiles of each fraction are shown in Figure 5. We isolated 25 
different neutral oligosaccharides (peaks A-Y) on the ODS column. 
Structural assignment of the oligosaccharides was performed by a 2-D 
HPLC mapping technique [48] (see below).

Identification of high mannose type oligosaccharides

PA-oligosaccharides A, E, I, J, K, N, O, P, T, V and X were identified 

Figure 1: SDS-PAGE of purified pig kidney Na+/K+-ATPase and the time-
course of deglycosylation with PNGase F. Lane 1: molecular-weight marker, 
lane 2: Na+/K+-ATPase purified from pig kidney, lanes 3-6: Na+/K+-ATPase 
treated with PNGase F for 0.5 h (lane 3), 1 h (lane 4), 2 h (lane 5) and 6 h 
(lane 6). 

http://dx.doi.org/10.4172/2153-0637.S5-005
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as high mannose type by their molecular masses and GUs and the 
assignments were confirmed by co-injection with the corresponding 
standard oligosaccharides on the ODS column. GU coordinates of 
N-glycans (A, E, I, J, K, N, O, P, T, V and X) from Na+/K+-ATPase 
coincided within 15% error with those of known oligosaccharides on 
the 2D map. High mannose type PA-oligosaccharides, A, E, I, J, K, N, 
O, P, T, V and X were assigned to code numbers M5.1, M6.1, M7.2, 
M7.1, M7.7, M8.1, M8.4, M8.2, M8.1, M9.1 and M9.2, respectively 
(Table 1). Oligosaccharides N and T were both assigned to M8.1. Man6 
and Man5 oligosaccharides were most abundant at 16.7% and 9.1%, 
respectively (Table 1). Man7 and Man8 oligosaccharides occurred as 
isomeric structures. There was 8.3% and 0.6%, Man9 and GlcMan9 
respectively. High-mannose type oligosaccharides account for nearly 
half of the total N-linked oligosaccharides.

Identification of complex and hybrid type oligosaccharides

PA-oligosaccharides B, C, D, F, H, L, M, Q, R, U, W and Y were 
identified as complex-type and G as a hybrid-type oligosaccharide.
GU coordinates of N-glycans (B, C, D, F, G, H, L, M, Q, R, U, W 
and Y) coincided again within 15% error with those of known 
oligosaccharides on the 2D map. The observed molecular mass of the 
glycans are identical to the expected molecular masses within 2 Da. 
Complex-type PA-oligosaccharides B, C, D, F, H, L, M, Q, R, U, W 
and Y were assigned to code numbers 200.2, 200.3, 210.2, 200.4, 210.4, 
200.22, 210.22, 300.18, 200.23, 400.16 and 410.16, respectively (Table 
1). Most of the complex-type glycans were composed of biantennary 
oligosaccharides; tri/tetraantenary glycans were detected to a lesser 
extent. PA-oligosaccharides R, U, L and M contain one or two terminal 
α1,3-galactose residues and the existence of α1,3-galactose residues 
was confirmed by the changes in GUs upon α-galactosidase digestion 
(data not shown). After α-galactosidase digestion, the elution positions 
of oligosaccharides R and L shifted to a position identical to that of 
oligosaccharide F. In a similar way, α-galactosidase digestion shifted 
the elution positions of fucosylated oligosaccharides U and M to a 
position identical to that of oligosaccharide H.

Discussion
Mass spectrometric analysis of trypsin-digested pig kidney Na+/

K+-ATPase showed that the major subtype is α1β1, consistent with 
the findings of Ovchinnikov et al. [54]. We found partial modification 
of Lys456 of the α subunit with 4-hydroxynonenal (HNE). HNE is 
known to be one of the major end products of lipid peroxidation in 
cells and recent studies suggest that HNE is a key signaling molecule 
to regulate stress-mediated signaling [55]. Previous reports suggest 
that HNE reacts with cysteine sulfhydryl groups of Na+/K+-ATPase 
and inhibit the enzyme activity [56-58]. It was also found that HNE 
reacts with other amino acids such as lysine to form adducts that also 

Figure 2: Amino acid sequence of pig Na+/K+-ATPase α1 and β1 subunit. 
Amino acid residues in red are identified in the CID-MS/MS study and the 
underlined residues are located in the transmenbrane region. Four consensus 
sites (Asn-X-Ser/Thr) in the α1 subunit are marked with blue rectangles. Three 
N-glycosylation sites in β1 subunit are marked with yellow rectangles.
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Figure 3: Identification of pig kidney Na+/K+-ATPase subtypes by mass 
spectrometry CID-MS/MS spectra of α-subunit peptides from 706-724 (A) and 
444-456 (B). Total mass chromatograms are shown for the 4-hydroxynonenal 
(HNE)-unmodified (C) and HNE-modified (D) peptides (444-456).
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interfere with the protein function [56]. Lys456 is close to the ATP-
binding site in the cytoplasmic domain [2]. The HNE modification at 
Lys456 thus conceivably inhibits enzymatic activity, but this should 
be investigated further in detail. Deglycosylation with PNGase F 
resulted in the time dependent appearance of three intermediate bands 
(corresponding to the β subunit with 2, 1 and 0 glycans), indicating 
that all the three N-glycosylation sites of the pig kidney β subunit are 
occupied with glycans. Full glycosylation has also been observed in 
other species [28,37]. Glycosylation analysis showed that pig kidney 
Na+/K+-ATPase has essentially no sialic acid. N-glycans attached to pig 
kidney Na+/K+-ATPase were composed of high-mannose type (60%), 
complex type (30%) and unidentified (10%). Oligosaccharides from 
lamb and dog kidney β subunit have been reported to be complex 
type [28], and those from rat kidney Na+/K+-ATPase are dominated 
by tetra-antennary complex-type glycans [40]. These differences 
suggest that the glycans expressed on Na+/K+-ATPase β subunit may 
be species specific. Three N-glycosylation sites are conserved among 
sheep, dog, rat, and pig and the sequence homology of the β subunit is 
high (Supplementary Figure 1). The observed differences in N-glycan 
structure are thus possibly attributed to the different expression levels 
of glycosyl transferases/glycosidases among species. Characteristics of 
complex-type oligosaccharides include capping of the non-reducing 
ends with a lactosamine unit and some with a α1-3 linked galactose. 
Lactosamine was also found on N-glycans derived from Na+/K+-

ATPase-enriched rat kidney membrane fraction [40]. Capping with a 
α1-3 linked galactose is not found in human N-glycans. Kitamura et al. 
[25] have reported that Na+/K+-ATPase β subunit from mouse brain 
binds to GlcNAc, and trans and cis β-β interactions were predicted. 
In our analysis, most glycans were capped with α1-3 or β1-4 linked 
galactose; GlcNAc-terminating oligosaccharides were hardly detected. 
Therefore, pig kidney Na+/K+-ATPase seems not to show significant 
β-β interactions. The oligomeric state of Na+/K+-ATPase may regulate 
cell-cell interactions. Although the α and β subunits are non-covalently 
linked in a minimal αβ-protomer structural unit [59], solubilized 
enzyme solutions contain other oligomers, such as (αβ)2, (αβ)3 and 
(αβ)4 as shown by chemical crosslinking [60]. HPLC analysis of 
solubilized Na+/K+-ATPase reveals that K+ induces the conversion of 
protomer into diprotomer and/or higher oligomers while Na+ has the 
opposite effect [61,62]. Cation and hence, conformation-dependent 
alteration in the oligomer equilibrium may occur through changes in 
exposure of the transmembrane domain of the β subunit as mutational 
analysis has shown that this portion of the protein mediates β-β homo-
oligomerization, as well as α/β assembly [63]. Oligomerization of Na+/
K+-ATPase through β-β contact would concentrate or induce the 
close assembly of N-glycans which may facilitate cell-cell adhesion. 
Experiments are underway in our laboratory to investigate the role 
of glycans in the oligomerization of Na+/K+-ATPase during cell-cell 
adhesion.

Figure 4: HPLC profiles PA-glycans derived from pig kidney Na+/K+-ATPase.

Elution profiles on DEAE column (A) and amide column (B) are shown. The 
void fraction on DEAE column was subsequently applied to the amide column 
and the peaks are numbered from 1 to 10.

Figure 5: Elution profiles of PA-glycans from pig kidney Na+/K+-ATPase on 
ODS column. Each fraction (peak 1 to 10 in Figure 4B) was applied to ODS 
column and the peaks are labeled from A to Y (Table 1).
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Table 1: N-glycan structures of pig kidney Na+/K+-ATPase. 
 
 
Peak name       Structure of                              Glucose units    Molecular mass    Relative 
Code no.        oligosaccharides                           on ODS Amide       (Da)        quantity 
                                                        Observed  Reported   Observed  Expected     (%) 
 
High-mannose type (11) 
 
           Man6       
                  Man6       
E            Man3       Man4GlcNAc4GlcNAc   6.0    6.1    1475.30  1475.38  16.7 
M6.1             Man2Man3      7.5    7.1  
 
           Man6       
                  Man6      
A            Man3       Man4GlcNAc4GlcNAc   7.4    7.2    1313.97  1313.24   9.1 
M5.1                   Man3      6.6    6.2  
 
     Man2Man6       
                  Man6       
V      Man2Man3       Man4GlcNAc4GlcNAc    5.2    5.2    1960.39  1961.81   8.3 
M9.1      Man2Man2Man3      9.9    9.7 
 
          Man6       
                 Man6       
J           Man3        Man4GlcNAc4GlcNAc    5.2    5.8    1637.37  1637.52   6.1 
M7.1      Man2Man2Man3      8.4    8.0   
 
     Man2Man6       
                  Man6       
I             Man3      Man4GlcNAc4GlcNAc    4.4    5.1    1637.03  1637.52   5.0 
M7.2            Man2Man3      8.4    8.1  
 
      Man2Man6       
                  Man6       
N,T             Man3      Man4GlcNAc4GlcNAc    5.4    4.9    1799.23  1799.67   3.2 
M8.1      Man2Man2Man3      9.2    9.0   
 
            Man6       
                  Man6       
P       Man2Man3      Man4GlcNAc4GlcNAc    6.2    6.4    1799.49  1799.67   1.1 
M8.2      Man2Man2Man3      9.1    8.5  
 
           Man6       
                  Man6       
K      Man2Man3       Man4GlcNAc4GlcNAc    6.3    6.8    1637.31  1637.52   1.1 
M7.7             Man2Man3      8.4    7.7  
 
     Man2Man6       
                  Man6       
O      Man2Man3       Man4GlcNAc4GlcNAc    5.5    5.7    1798.68  1799.67   1.1 
M8.4             Man2Man3      9.1    8.7        
 
     Man2Man6       
                  Man6       
X      Man2Man3       Man4GlcNAc4GlcNAc    6.1    6.3    2121.55  2123.81   0.6 
M9.2 Glc3Man2Man2Man3     10.4   10.3        
 
 
 
 
 
 
 

 Gal4GlcNAc6       
                Man6       
 Gal4GlcNAc2                     
W                       Man4GlcNAc4GlcNAc 10.8    10.6   2446.65  2450.30  0.8 
400.16 Gal4GlcNAc4     10.1     9.9  
                Man3       
 Gal4GlcNAc2 
 
  Gal4GlcNAc2Man6       
B                        Man4GlcNAc4GlcNAc   9.8     9.4   1557.93  2557.49  0.7 
200.2       GlcNAc2Man3     6.6     5.9  
 
 
                                      Fuc6      
 Gal4GlcNAc2Man6                  |       
D                       Man4GlcNAc4GlcNAc  12.9    13.1   1704.15  1703.63  0.6 
210.2       GlcNAc2Man3     6.6     6.3  
 
                                      Fuc6      

Gal3Gal4GlcNAc2Man6                   |     
M                        Man4GlcNAc4GlcNAc  14.2    14.1   2026.37  2027.91  0.6  
210.22  Gal4GlcNAc2Man3     8.4     8.1  
 
 
Hybrid type (1) 
       
         Man6       
                Man6       
G          Man3        Man4GlcNAc4GlcNAc   8.0     7.9   1678.09  1678.58  0.9 
H5.12   Gal4GlcNAc2Man3     7.7     7.4  
 
 
         Others  12%   

 

Complex type (13) 
 
F   Gal4GlcNAc2Man6    
200.4                       Man4GlcNAc4GlcNAc 10.6   10.2    1719.31  1719.63  8.3 
  Gal4GlcNAc2Man3     7.5    7.0  
 
R    Gal3Gal4GlcNAc2Man6       
200.23                       Man4GlcNAc4GlcNAc 11.0   10.6    2042.21  2043.91  7.1  

Gal3Gal4GlcNAc2Man3     9.1    8.6  
 
                                      Fuc6    
H  Gal4GlcNAc2Man6                  |       
210.4                       Man4GlcNAc4GlcNAc 13.9   14.1    1864.97  1865.77  3.6  
  Gal4GlcNAc2Man3        7.7    7.4  
                          

                                      Fuc6     
U    Gal3Gal4GlcNAc2Man6                  |     
210.23                       Man4GlcNAc4GlcNAc 14.5   14.4    2188.97  2190.06  3.5  

Gal3Gal4GlcNAc2Man3                     9.4    9.0  
 
L    Gal3Gal4GlcNAc2Man6       
200.22                       Man4GlcNAc4GlcNAc 10.7   10.3    1881.00  1881.77  3.3  
  Gal4GlcNAc2Man3     8.4    7.5  
  
   Gal4GlcNAc6       
                 Man6              Fuc6      
  Gal4GlcNAc2                        |             
Y                       Man4GlcNAc4GlcNAc 14.1   14.2   2592.61  2596.45  2.2  
410.16  Gal4GlcNAc4     10.4   10.3  
                 Man3       
  Gal4GlcNAc2         
 
   Gal4GlcNAc6       
Q                 Man6       
300.18  Gal4GlcNAc2        Man4GlcNAc4GlcNAc  8.3    8.1    2083.31  2084.97  1.8  
  Gal4GlcNAc2Man3     9.1    8.6  
 
                                     Fuc6   
 Gal4GlcNAc2Man6                  |       
S Gal4GlcNAc4       Man4GlcNAc4GlcNAc  17.6   17.7    2228.99  2231.11  1.4  
310.8                Man3     9.1    8.7  
 Gal4GlcNAc2       
 
 
C        GlcNAc2Man6       
200.3                       Man4GlcNAc4GlcNAc  10.1    9.6    1558.44  1557.49  1.0  
  Gal4GlcNAc2Man3    6.6    6.1        
 
 
 
 
 
 
 
 
 
 
 
 

 
                        

2
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