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Abstract
Ketamine is an old drug of abuse showing currently a new wave in its spread. Also, ketamine`s therapeutic 

quality is currently under strong observation, especially in terms of its value in the treatment of depression and 
suicidality. It`s a potential revolution in understanding the mechanisms of antidepressant treatment that single and 
repeated therapeutic administrations of sub-anesthetic ketamine doses are associated with a rapid and robust but 
transient antidepressant after-effect (ADE) in patients with treatment resistant major depression. There is increasing 
evidence that this ADE might result primarily from ketamine`s feature of being a non-competitive antagonist of 
glutamatergic N-methyl-D-aspartate (NMDA)-receptors embedded in synaptic membranes of neuronal cortico-limbic 
networks promoting an extracellular glutamate surge, thereby mediating changes in synaptic and cellular plasticity 
via local glutamate non-NMDA-receptors. Here, we focus on a couple of striking clinical and biological overlaps with 
ketamine and ethanol being a non-competitive antagonist of NMDA-receptors, too. Among them, a good portion 
is currently assumed to be specifically involved in both, the mechanisms of ADE (in the case of ketamine) and the 
development of addiction (in the case of ethanol). These overlaps are mainly addressed here in more detail, what 
may draw the reader in terms of the treatment of mood disorders to both, the possibility of a progressing transfer 
from ADE to addiction when repeatedly using therapeutic ketamine pulses, and on the other hand, a hypothesized 
therapeutic ̀ antidepressant window´ of modest and cautious ethanol use in depressives, who are (still?) not addicted 
to ethanol. Of course, more frequent and intense use of ethanol or ketamine would prepare the brain to tolerance and 
dependence possibly using the same pathways.
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Introduction 
Ketamine is approved to start and maintain anaesthesia or analgesia 

and known as an old drug of abuse showing currently a new wave in 
its spread [1-3]. Also, ketamine`s therapeutic quality is currently under 
strong observation, especially in terms of its value in the treatment 
of depression and suicidality [4-6]. A growing number of studies 
demonstrated a rapid and rigorous but transient anti-anhedonistic 
and antidepressant after-effect (ADE) occurring subsequent to sub-
anesthetic parenteral ketamine doses (usually a single ketamine 
infusion of 0.5 mg/kg over 40 minutes) in 50-80% of the cases when 
applied the first time to patients with treatment resistant unipolar or 
bipolar major depression [4-6]. ADE emerged within the first hours 
after a single ketamine administration, peaked in the next 24 to 48 
hours and dissipated within the following 3 to 7 days [4-6]. The onset 
and duration of ketamine`s ADE was highly inter-individual and 
increased with repeated or serial ketamine-infusions in those subjects, 
who did not respond on the infusions before [7] reminiscent of well-
known observations of early and delayed improvements using typical 
antidepressants. Adverse effects (mostly dissociation, dry mouth, 
tachycardia and elevated blood pressure) were mild, transient and dose 
dependent [4-6]. Recently, intramuscular, intranasal and oral routes of 
sub-anesthetic ketamine administration were demonstrated to be also 
followed by an ADE [4-9]. 

There are several speculations about sub-anesthetic ketamine`s 
ADE, including epigenetic mechanisms [6]. The most convincing 
hypothesis starts with an extracellular glutamate surge in cortico-

limbic brain regions due to disinhibited glutamatergic pyramidal 
neurons by an inhibition of tonic firing of GABAergic interneurons via 
inactivation of its NMDA-receptors by ketamine [10]. In this regard, 
increased glutamate activities were found in the medial prefrontal 
cortex of rats subsequent to the administration of sub-anesthetic but not 
anesthetic doses of ketamine [11]. Thereby, postsynaptic glutamatergic 
non-NMDA-receptors can be activated and sensitized, which should 
drive changes in cellular and synaptic plasticity assumed to be involved 
in ADE [12,13]. More specifically, an activation of mammalian target 
of rapamycin function (mTOR) should play a key role in remodeling 
synapses, thus mediating ADE [12-14]. Additionally, dopaminergic 
pyramidal neurons were assumed to be disinhibited or facilitated 
by ketamine [15] leading to dopamine surge in cortico-limbic areas 
[16,17], which was assumed to be responsible for stimulating and 
psychotomimetic effects of ketamine [15].

Similarities between Ethanol and Ketamine
At this juncture, elevated glutamate concentrations were found 
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recently i) in the blood of ethanol intoxicated patients, which declined 
during detoxification [18] and ii) in limbic brain regions of detoxifying 
alcoholics [19]. This is intriguing on the background that ethanol in 
physiological doses was demonstrated to antagonize NMDA-receptors 
non-competitively [20-22], just like ketamine. Of note, low doses of 
ethanol were found to be associated with antidepressant-like effects 
in Porsolt`s swim test on mice [23]. We can recall a few primary 
depressive ethanol-dependents [24], who reported in their early 
untreated history from `feeling better´, notably improved mood, more 
energy and better concentration (ADE?), after a few glasses of beer or 
wine, initially persisting over a few days before decaying. Assuming to 
better cope with their depression the frequency of ethanol-intake had 
been increased over time resulting in a tolerance towards their `feeling 
better´. In addition, aversive withdrawal symptoms had occurred that 
worsened their depression and promoted more frequent or continuous 
drinking (own unpublished observations). 

Of note, chronic ethanol-dependents were described to have lower 
brain glutamate concentrations in sustained abstinence than normal 
controls [25,26], eventually pointing to long-term adaptation due to 
former repeated or prolonged glutamate-surge of regular drinking. 
Is this what can happen as a consequence of more frequent ketamine 
infusions, thus giving birth to an aberrant learning process, such as 
addiction [27]?

In mammalian animals, ketamine was found (i) to reduce ethanol-
seeking behavior and (ii) to substitute for ethanol in drug discrimination 
tasks [28,29]. In the late 1990ies, Krystal et al. had demonstrated that 
ketamine produced dose-related ethanol-like effects in detoxified 
alcoholics [30]. In healthy subjects, a usual sub-anesthetic intravenous 
ketamine dose was estimated to produce subjective effects similar to 
5 standard drinks [31]; approximately three quarters a bottle of wine. 

Addressing these substantial similarities between ketamine and 
ethanol, the question arises whether `sub-anesthetic´ ethanol is able 
to evoke ADE when applied modestly `with caution´ in low frequent 
pulses, i.e. no more than once to thrice a week, to depressives being 
not addicted to ethanol. Ethanol`s ADE might be less pronounced 
than ketamine`s ADE due to ethanol`s somewhat weaker antagonism 
of NMDA-receptors [20-22,32]. Subsequent to more frequent 
ethanol intake, ethanol`s ADE might be blurred by hangover and the 
development of tolerance and abstinence symptoms, which could 
partially result from ethanol`s stronger agonistic action on GABA-
A-receptors and up-regulation of NMDA-receptors [20-22,32]. There 
are some further intriguing clinical and biological characteristics, that 
ethanol shares with ketamine:

i) Increasing doses were associated with sedation, anesthesia, 
amnesia and more pain relief [6,31,32] - perhaps via increasing 
agonistic and activating actions on cortical, subcortical and brain-stem 
GABA-A-receptors and voltage-gated ion-channels [20,21,32-35].

ii) Modulation of cortico-limbic dopamine [17,21,35-38] and 
opioid pathways [31,32,39] potentially involved in rewarding [40,41] 
and affect regulation [42,43].

iii) Increased neurotrophin (BDNF, NGF) levels after acute 
administration [44,45] and decreased neurotrophin levels during 
prolonged intake [14,46].

iv) Inhibition of synaptic long-term potentiation (LTP) of 
rodent hippocampal neurons which persisted after washout of the 
respective drug, promoting the discussion about drug-induced meta-
plastic synaptic changes [47-49].

v) Activation of mTOR-signaling pathways [12,13,50,51].

vi) Synaptic adaptations, such as increasing number and size 
of dendritic spines in rodent hippocampal and prefrontal neurons 
[13,52,53].

vii) Repeated administration induced tolerance in euphoriant 
and stimulating actions [21,54] as well as in ADE [55-57], own 
unpublished observations].

viii) Repeated administration induced gene expression of specific 
NMDA receptor subunits in cortico-limbic brain regions [20,32,58-
60].

ix) Down-regulation of cerebellum following repeated drug 
administration [59].

x) Chronic or regular intake was associated with the 
development of addiction and neurotoxic effects that could lead to 
brain atrophy [32,34,54,61].

xi) Bioavailability of oral ketamine is low (20%) [34] and that 
of ethanol decreased from about 85% in young people down to 40% in 
the elderly [62].

Among them, a good portion (ii-vi) is currently discussed to 
be specifically involved in both, the mechanisms of ADE (in case of 
ketamine) [6,12-14,45,52] and the development of addiction (in the 
case of ethanol) [21,44,47,50,51,53,58,59,63,64]. Other similarities 
(vii, viii) were more plainly associated with adverse effects, such as 
addiction and neurotoxicity [20,32,34,54,55-61]. Especially, an altered 
gene expression of specific NMDA-receptors (viii) due to repeated 
administrations of both agents might be crucial in attenuating ADE 
and augmenting the adverse effects of ketamine and ethanol. Most 
recently, further evidence was found that an overexpression of NMDA-
receptor subunit epsilon-1 (NR2A) might promote vulnerability for 
major depression [65] perhaps contributing to a tolerance in ADE 
[55-57]. Frequent and regular ethanol ingestion was associated with 
an overexpression of NR1- and NR2B-subunit containing NMDA-
receptors in cortico-limbic synapses, including the dorsomedial 
striatum, assumed to be involved in the development of addiction 
and abstinence syndrome [20,31,66]. However, both might be simply 
result from a weakened stress defense being characteristic for both, 
major depression and addiction [52,65]. In this context, chronic stress 
is associated with a loss of synaptic spines of rodent hippocampal 
and prefrontal neurons supposed to reflect an impaired synaptic 
plasticity there [52]. Intriguingly, a single and low dose of ketamine 
was demonstrated to increase spine density and reverse stress-induced 
deficits in synaptic function of prefrontal pyramidal neurons [52] 
hypothesized to contribute to ketamine`s ADE [52].

It is emphasized that chronic intermittent ethanol exposure to 
rats was also associated with an increase in dendritic spine density 
in prefrontal pyramidal neurons that occurred precisely within one 
week after ethanol cessation [63,64] and that seems to be similar 
to alterations in spine morphology found after a single, low dose of 
ketamine [13,52]. It`s a challenge to differentiate whether those 
dynamics in morphological plasticity of excitatory glutamatergic 
neurotransmission [52] are assigned to therapeutic, e.g. antidepressant 
actions [13] of the drugs, or simply to the development of substance 
dependence [53,63,64], unless being two clinical sides of the same 
coin generally reflecting the neurobiological trace of plasticity (cellular 
learning) in stress-regulation. 
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Differences between Ethanol and Ketamine
On the other hand, there are some ketamine-specific effects 

that differentiate from ethanol, such as short elimination half-live 
[21,32], minor potency in activating postsynaptic GABA-A-receptors 
[21,32,34,67] and augmentation of tau-phosphorylation in animal 
cortices [59] as well as producing genitourinary toxicology [34] and 
negligible physical withdrawal symptoms in humans [34,54,68,69]. 
Moreover, ketamine administration is associated with dose-dependent 
psychedelic, dissociative, hallucinogenic and psychotomimetic 
perceptions [4-6,54], which are not characteristic for ethanol-
intoxication. 

Dissociation, ADE and Glutamate Surge
Recently, dissociative symptoms were found to be positively 

related to ketamine`s ADE [70]. But one should bear in mind that 
depersonalization is clinically overlapping with dissociation and was 
found to be related to ethanol ingestion [71,72] and was hypothesized 
to be associated with increased brain glutamate [73] – just like ketamine 
[4-6,70]. Ambiguously, dissociative symptoms were found to be not 
unusual in substance abusers [74] and were assigned to co-morbidity 
of alcoholism [75]. However, both dissociation and glutamate activity 
were demonstrated to be not related to ketamine`s ADE in ten patients 
with major depression – unfortunately, the glutamate measurements 
were made in their occipital cortices and not in their cortico-limbic 
areas [76]. In healthy volunteers, sub-anesthetic ketamine was 
inconsistently associated with a glutamate surge in the prefrontal 
cortex [77-79], and in patients with major depression a glutamate sink 
was documented there, which normalized with clinical recovery [79]. 
In aggregate, further clarifying studies on the effects of both, ketamine 
and ethanol pulses on glutamate activities in cortico-limbic pathways 
of patients with mood disorders and its relation to ADE or `feeling 
better´ are warranted. 

Discussion
The explanation that ketamine exerts its ADE via antagonism 

of glutamate NMDA-receptor is called into question considering a 
lacking ADE of memantine being an uncompetitive antagonist of this 
receptor, too [80]. Nevertheless, there is new evidence that memantine 
has antimanic and mood stabilizing properties in the treatment of 
bipolar disorder [81]. Further support for the `glutamate-hypothesis´ 
of ADE comes from nitrous oxide - exerting also antagonizing actions 
on NMDA-receptors -, as this narcotic agent was also demonstrated to 
evoke a rapid and robust ADE in treatment resistant major depression 
subsequent to a sub-anesthetic dose [82], just like ketamine does [4-6].

The presented overview about the clinical and biological overlaps 
of ketamine and ethanol should draw the readers` attention in terms 
of the treatment of major depression to both, the possibility of a 
progressing transfer from ADE to addiction when using repeated 
ketamine pulses, and on the other hand, a hypothesized therapeutic 
`antidepressant window´ of low frequent and modest ethanol pulses in 
depressives, who are (still?) not addicted to ethanol. 

More frequent and intense use of ethanol or ketamine would 
prepare the brain to tolerance and dependence upon in the same 
sophisticated neurobiological pathways considering aberrant cellular 
learning in cortico-limbic networks [83,84]. Recent epidemiological 
findings from a survey of a nationally representative sample of the 
population in the USA underlined the risky role of ethanol in affect-
regulation as it confirms that drinking to mitigate mood symptoms 

was associated with the development of ethanol dependence [85]. And 
without a doubt, at risk drinking of patients with major depression is 
reliably accompanied by a worsening of depression, social functioning, 
suicide risk and increasing health care utilization [86]. Nevertheless, 
the authors are not aware of any study that specifically assessed ethanol 
after-effects on mood and energy in individuals with affective disorders 
being or not being addicted to ethanol. Although the use of ethanol 
to relieve affective symptoms is common among patients with mood 
disorders [87] and despite the fact that ethanol has some mechanistic 
characteristics in common with antidepressants, such as enhancing 
monoaminergic neurotransmission [42], there is merely insufficient 
evidence of the self-medication hypothesis in mood disorders up to 
date [88-90]. To the contrary, there is increasing evidence attributing 
the nucleus accumbens with its projections to the prefrontal cortex to 
be a key circuit in both, regulating of antidepressant actions [91] and 
burgeoning as well as maintaining addiction [83,84].

The mood changes of acute mild ethanol intoxication (transient 
euphoria) and chronic alcohol intake (ongoing dysphoria) is commonly 
thought to be largely due to the mediation of central dopamine system, 
e.g. by indirectly increasing and decreasing the synaptic dopamine 
efflux in cortico-limbic dopamine circuits implicated in the learning 
of goal-directed and rewarding behaviors [21,37,38,40,41,92,93], 
respectively. However, one might speculate on the possibility of longer 
lasting favorable ethanol after-effects, just like ADE, due to sustained 
modifications in cortico-limbic glutamatargic synapses, notably being 
discussed to be also involved in the progression of adverse effects, such 
as addiction and neurotoxicity [20-22,53,58,59,61,83].

Conclusion
There are striking similarities between ketamine and ethanol, 

particularly in terms of modulating dopaminergic and glutamatergic 
pathways in cortico-limbic brain areas, evidently being involved in 
learning and affect regulation, thereby probably mediating ADE, 
as well as the development of addiction. Exceeding an individual 
threshold with ingesting a critical amount or using a critical frequency 
of administration of these drugs would turn its favorable, therapeutic 
effect (ADE) more likely to adverse effects (addiction, neurotoxicity). 
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