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ABSTRACT

Introduction: The quantitative measurements based on liquid chromatography (LC) coupled with mass 
spectrometry (MS) often suffer from the problem of missing values and data heterogeneity from technical variability. 
We considered a proteomics data set generated from human kidney biopsy material to investigate the technical 
effects of sample preparation and the quantitative MS. 

Methods: We studied the effect of tissue storage methods (TSMs) and tissue extraction methods (TEMs) on data 
analysis. There are two TSMs: frozen (FR) and FFPE (formalin-fixed paraffin embedded); and three TEMs: MAX, 
TX followed by MAX and SDS followed by MAX. We assessed the impact of different strategies to analyze the data 
while considering heterogeneity and MVs. We have used analysis of variance (ANOVA) model to study the effects 
due to various sources of variability.

Results and Conclusion: We found that the FFPE TSM is better than the FR TSM. We also found that the one-
step TEM (MAX) is better than those of two-steps TEMs. Furthermore, we found the imputation method is a better 
approach than excluding the proteins with MVs or using unbalanced design.
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List of Abbreviations: LC: Liquid Chromatography; MS: Mass 
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Completely at Random; MAR: Missing at Random; MNAR: 
Missing not at Random; MVs: Missing Values; TSM: Tissue 
Storage Method; FFPE: Formalin-Fixed Paraffin Embedded; FR: 
Frozen; TEM: Tissue Extraction Method; MAX: Protease MAX; 
TX: Triton X-100; SDS: Sodium Dodecylsulfate; LCMD: Laser 
Capture Microdissection; ETD: Electron-Transfer Dissociation; 
CID: Collision-Induced Dissociation; cRAP: Common Repository 
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INTRODUCTION

Proteins are important biological macromolecules performing 
a wide variety of functions. The proteome can be defined as the 
entire set of proteins translated and/or modified within a living 

organism [1,2]. Proteomics more generally refers to large-scale LC-
MS based discovery studies designed to address both quantitative 
and qualitative aspects of the proteome in question. Now 
proteomics has emerged as a powerful tool across various fields 
such as biomedicine mainly applied to diseases, agriculture and 
animal sciences [3-10]. The practical application of proteomics 
includes expression proteomics, structural proteomics, biomarker 
discovery, interaction proteomics, protein networks, etc. [11,12]. 
Here, we are dealing with proteomic expression data that 
are generated by using high throughput technologies usually 
involving MS [13-18]. LC-MS is used in proteomics as a method 
for identification and quantification of peptides and proteins 
in complex mixtures [19,20]. There are two basic proteomics 
approaches, namely bottom-up and top-down [10,21]. The 
most common proteomics approach is the bottom-up in which 
proteins in a sample are enzymatically digested into peptides and 
subjected to chromatographic separation, ionization and mass 
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analysis. In the top-down approach, intact proteins are introduced 
into MS where they are subjected to fragmentation. Further, the 
quantification of peptides/proteins may be either label-free or 
labelled (metabolic, enzymatic, or chemical) to detect differences 
in protein abundances among different conditions [22-25]. In 
label-free quantification, MS ion intensity (peak area) and spectral 
counting of features are the major approaches. Conversely, top-
down proteomics addresses the study of intact proteins and 
consequently is most often used to address purified or partially 
purified proteins [26].  Here, we are dealing with the bottom-up 
approach in which peak area values have been used in label-free 
quantification of proteins. Various approaches exist for proteomics 
data analysis in which the first step is to summarize the intensities 
of all features using a quantitative summary followed by some 
transformation such as log transformation to approximate it to 
normal distribution. However, each of these methods has several 
drawbacks which can be studied by examining the statistical 
properties of these methods [27-29]. When a data set contains an 
equal number of subjects in each group, and when features have 
no missing observations, the data set is called balanced. It is not 
always the condition; sometimes the data can be unbalanced, 
having an unequal number of subjects, or missing observations, 
or both. MVs in proteomics data can occur due to biological and/
or technical issues. These are of three types: (i) missing completely 
at random (MCAR) in which MVs are independent of both 
unobserved and observed data; (ii) missing at random (MAR) if 
conditional on the observed data, the MVs are independent of the 
missing measurements; and (iii) missing not at random (MNAR) 
when data is neither MCAR nor MAR [30]. The data with missing 
observations can be analyzed either by excluding the features having 
missing observations, by using statistical methods that can handle 
unbalanced data, or by using imputation methods. If the features 
having missing observations are excluded, then there is loss of 
information from the experiment. Therefore, the use of methods 
that can handle MVs, such as imputation methods, are generally 
preferred. However, the use of imputation methods may lead to 
wrong interpretation and still these methods are questionable in 
statistical terms [31,32]. The data set usually consists of biological 
replicates only or both biological and technical replicates. 
Biological variability arises from genetic and environmental factors; 
it is intrinsic to all organisms. The technical approaches include 
sample collection and storage, sample preparation, extraction, LC 
separation and MS detection [20]. Sometimes, variations in the 
biological data or technical approaches to data collection lead to 
heterogeneity for the samples under study [33,34]. We performed 
analysis of laser capture microdissection (LCMD)-LCMS high-
resolution proteomics dataset using multifactor ANOVA model. 
We studied the variability in the data based on different TSMs 
and TEMs. We estimated the contribution of various sources of 
variation to the overall variability. The study of data variability 
was done using various analysis methods and transformation and/
or normalization techniques. In this paper, we investigated the 
technical effects of sample preparation and the quantitative MS 
resulting in heterogeneity for low abundant protein quantification. 
This will improve the biomarker discovery studies utilizing limited 
bioreposited tissue resources. We have done all the statistical 
analysis in R [35] and codes are available from the authors on 
request. 

METHODS

Proteomics experiment

Data for the methods used in the collection, extraction, and 
proteomic analysis have previously been published under Hobeika 
L et al. [36]. Individual data files for MS data (.RAW), peak lists 
(.mgf), and compressed search results (.mzIdentML) files can be 
downloaded from the MassIVE data repository (http://massive.
ucsd.edu/; MassIVE ID: MSV000079914) and ProteomeXchange 
data repository [37] (http://www.proteomexchange.org/; 
ID:  PXD004601). For consideration of variability of the feature 
detection and MVs abbreviated methods for these studies are 
provided below.

Tissue collection: FR and FFPE tissue from the same human 
kidney unsuitable for transplant were cut into 10 μm sections on 
Polyethylene terephthalate membrane frame slides, stained with 
Mayer’s hematoxylin and glomerular tissue compartments isolated 
using a Leica LMD6500 Laser Microdissection System.

Protein extraction: Experiments were conducted to compare a 
single tissue solubilization step using an acid labile surfactant to 
approaches for tissue decellularization. The single step method 
used the acid-labile surfactant Protease MAX surfactant with 
heating (MAX). Two tissue decellularization methods incorporated 
sequential decellularization with solubilization of the residual 
pellet with MAX. First tissue decellularization approach used 
0.4% SDS + HALT protease/phosphatase inhibitor cocktail 
(Thermo Fisher) followed by solubilization of residual “ECM” 
pellet using MAX (SDS.MAX). Second tissue decellularization 
approach used sequential decellularization with 25mM NH4OH/ 
0.5%TritonX-100 (TX) followed by solubilization of residual 
“ECM” pellet using MAX (TX.MAX). As described in Hobeika L et 
al. [36], the tryptic peptides were analyzed using a LC-MS Orbitrap 
ELITE approach with peptide assignments using a Mascot/Sequest 
search strategy. Scaffold4 was used to set false discovery rate 
(FDR) control. Finally, we obtained a label-free quantified data of 
identified proteins (Supplementary File 1). Please see more details 
about the experimental procedures in “Supplementary File 2”. We 
analyzed the data for comparing statistical methods with MVs in 
the presence of heterogeneity.

Proteomics data analysis

The purpose of this study is to (1) compare variability between (a) 
tissue storage methods (TSMs) and (b) tissue extraction methods 
(TEMs); (2) compare various statistical approaches of analysis and 
normalization methods.

We have two TSMs (FR and FFPE) and three TEMs (MAX, 
TX.MAX, SDS.MAX) with three replicates and two MS runs 
leading to 36 samples (total number of samples = 2 × 3 × 3 × 2 = 
36). A flow chart of the experiment is given below in Figure 1. 

In the above flowchart, we have shown the basic steps of carrying 
out the experiment involving TSMs and TEMs. We have repeated 
the MS two times to get more reliable results for estimating 
experimental variability. We obtained the following six groups as 
given below in the Table 1. There are three replicates for each of 
the six groups thus leading to 18 samples. Then, we have repeated 
the MS two times for the 18 samples and we obtained six samples 
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for each of the six groups.

Data preprocessing: Initially, there were 728 proteins identified in 
both runs, 380 proteins identified in run 1 only and 342 proteins 
identified in run 2 only. There was a total of 1450 identified 
proteins out of which 1376 proteins were unique, and 37 proteins 
were redundant and duplicate entries were removed from the 
data. Furthermore, there were 111 proteins for which all the 
samples have NA values (MVs). Therefore, we are left with protein 
data with 1302 proteins that correspond to 1178 gene symbols 
(Supplementary File 1). The percentage of NA values within each 
sample (36 samples) ranges from 41.3%-78.3% with a median 
value of 49.5%. As we have a greater number of groups, therefore 
it is difficult to perform analysis with this data having MVs. If we 
discard the proteins having any MVs in any of the samples in a 
group, then there will be only 26 proteins available. Another way is 
to retain the proteins having at least one or two observations in each 
group. A summary of number of proteins available in each group 
is given below in Table 2. If we use the number of proteins having 
at least one observation in a group, then we can assess a greater 
number of proteins. However, we need at least two observations in 
each group to calculate CV for a protein in each group. Therefore, 
we used 372 proteins which have at least two observations in each 
of the six groups for further analysis.

Statistical approaches: The analysis of proteomics data becomes 
more complex due to non-normality behavior of the data, and 
greater proportion of MVs within and across the samples. To get a 
better insight of proteomics data analysis while dealing with these 
problems, we have performed the analysis using three methods as 
given below:

A1. Method for data excluding missing values: Proteins 
having complete observations for all the samples, i.e., no 
MVs, were used for comparison. Proteins having MVs were 
discarded from the analysis.

A2. Method for data including missing values: The proteins 
with MVs across the samples were analyzed using unbalanced 
ANOVA method [38].

A3. Method for data using imputation: The MVs were imputed 
after applying the normalization methods to the data [39] as 
given in next section. We have used the “impute. MAR” 
function of the R package “imputeLCMD” [40] for imputing 
the MVs. Three different types of imputation under the 
assumption of MAR or MCAR, namely, MLE [41], SVD 
[42] and KNN [43,44] are available in this package. We have 
used only the SVD method (A3) for imputation.

We applied three different data transformation and/or 
normalization methods:

N1.  Logarithmic transformation: The raw data is transformed 
by using logarithmic base 2.

N2. Quantile normalization: It is done by using log base 2 
transformation of raw data followed by “normalize.quantiles” 
method [45] available in R package “preprocessCore” [46].

N3. Variance stabilizing normalization: It is done by applying 
“justvsn” function available in R package “vsn” [47] to the 
raw data.

Therefore, by using three methods of analysis (A1, A2 and A3) 
based on three transformation and/or normalization methods 
(N1, N2 and N3), we have 9 different combinations (statistical 
approaches): excluding MVs (A1.N1, A1.N2, A1.N3); including 
MVs (A2.N1, A2.N2, A2.N3); imputing MVs (A3.N1, A3.N2, 
A3.N3). We preprocessed the data using these methods to get 9 
different datasets (preprocessed data) for 6 groups having 6 samples 
in each group. We calculated the coefficient of variation (CV) for 
each protein in the groups: TSM (FR vs. FFPE), TEM (MAX vs. 
TX.MAX vs. SDS.MAX) and TSM×TEM (FR_MAX, FR_TX.MAX, 
FR_SDS.MAX, FFPE_MAX, FFPE_TX.MAX, FFPE_SDS.MAX). 
It has two purposes: (i) Which TSM/ TEM/ TSM×TEM have the 
minimum CV based on different statistical approaches; (ii) Which 
statistical approach leads to the minimum CV. We have used 
ANOVA model as given below for studying the contribution of 
variability due of TSM, TEM and the interaction term TSM×TEM:

( )ijk i j ijkij
y µ α β αβ ε= + + + +        		                 (1)

where, ijky is the transformed and/or normalized data for a protein, 
( )1,2i  i  α = is the thj  TSM effect, ( )1,2,3j  j   β = is the thj  TEM effect 

and ( )ij
αβ is the interaction effect, TSM×TEM. The term ijkε  is 

the normally distributed error component and ( )20,ijk N  ε σ∼ . The 
mapping of the above model to the experimental design allows us 
to estimate the contribution due to each source of variation for 
each protein. 

RESULTS AND DISCUSSION

Comparison of CV among various groups

We have 141, 372 and 372 proteins obtained by using the analysis 
methods A1, A2 and A3, respectively. The summary of CV using 9 
different statistical approaches for comparisons among TSMs and 
TEMs is shown below in Table 3. The summary of CV using 9 
different statistical approaches for comparisons among six groups 
of TSM×TEM is shown below in Table 4.

Figure 1: Flowchart of the experiment.

                                 TSM
  TEM 

FR FFPE

Direct MAX 1 (FR_MAX) 4 (FFPE_MAX)

Sequential 
Extraction

TX.MAX 2 (FR_TX.MAX) 5 (FFPE_TX.MAX)

SDS.MAX 3 (FR_SDS.MAX) 6 (FFPE_SDS.MAX)

Table 1: Table showing different groups under study. 
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Groups No. of proteins with no MVs
No. of proteins with MVs in 

all samples
No. of proteins with at least 

one observation
No. of proteins with at least two 

observations

FR_MAX 448 205 1097 995

FR_TX.MAX 357 324 978 881

FR_SDS.MAX 170 678 624 454

FFPE_MAX 373 295 1007 874

FFPE_TX.MAX 353 261 1041 890

FFPE_SDS.MAX 381 237 1065 920

Table 2: Summary of number of proteins and missing values in different groups. 

FR_ FR_ FR_ FFPE_ FFPE_ FFPE_

MAX TX.MAX SDS.MAX MAX TX.MAX SDS.MAX

M
V

 E
xc

lu
de

d A1.N1
2.64 

(1.34, 8.62)
2.71 

(0.83, 9.95)
4.73 

(2.25, 12.90)
3.00 

(1.96, 7.14)
2.87 

(2.08, 13.80)
2.34 

(0.75, 8.34)

A1.N2
0.87 

(0.12, 6.26)
1.05 

(0.18, 9.09)
2.32 

(0.22, 10.55)
0.87 

(0, 5.12)
0.96 

(0, 7.28)
0.85 

(0, 8.13)

A1.N3
0.77 

(0.17, 7.53)
1.01 

(0.13, 9.87)
2.37 

(0.32, 11.92)
0.84 

(0.12, 6.14)
0.95 

(0.18, 11.75)
0.83 

(0.10, 8.10)

 M
V

 I
nc

lu
de

d A2.N1
2.64 

(0.05, 11.71)
2.81 

(0.14, 10.93)
4.49 

(0.03, 19.81)
2.97 

(0.09, 13.33)
3.01 

(0.15, 13.8)
2.41 

(0.17, 17.14)

A2.N2
1.08 

(0, 10.62)
1.47 

(0, 9.33)
2.88 

(0.07, 16.32)
1.28 

(0, 10.50)
1.32 

(0, 12.62)
1.14 

(0, 13.32)

A2.N3
1.09 

(0.04, 9.67)
1.39 

(0.04, 9.87)
2.44 

(0.02, 17.52)
1.28 

(0.01, 9.55)
1.41 

(0.12, 12.45)
1.19 

(0.07, 17.72)

M
V

 I
m

pu
te

d A3.N1
2.94 

(0.95, 16.56)
3.26 

(0.83, 15.27)
5.06 

(2.25, 17.75)
3.40 

(1.34, 16.87)
3.33 

(0.62, 15.62)
2.86 

(0.69, 16.21)

A3.N2
1.59 

(0.24, 17.06)
1.83 

(0.06, 14.28)
2.77 

(0.20, 19.86)
1.78 

(0.02, 15.03)
1.70 

(0.02, 14.08)
1.75 

(0.03, 14.23)

A3.N3
1.57 

(0.14, 19.00)
1.82 

(0.19, 15.69)
2.48 

(0.32, 17.28)
1.74 

(0.07, 14.88)
1.7 

(0.21, 14.28)
1.63 

(0.16, 15.38)

Note: The first figure is the median value and the figures inside the parenthesis are respectively, minimum and maximum value.

Table 4: Summary of CV using 9 statistical approaches among six groups of TSM×TEM. 

TSM TEM

FR FFPE MAX TX.MAX SDS.MAX

 M
V

 E
xc

lu
de

d A1.N1
6.92 

(2.23, 12.77)
2.76 

(2.00, 9.49)
3.25 

(1.93, 9.64)
3.26 

(2.05, 15.90)
7.40 

(2.38, 15.24)

A1.N2
6.29 

(0.52, 12.50)
1.30 

(0.55, 5.10)
1.94 

(0.34, 9.02)
1.91 

(0.32, 12.67)
6.74 

(0.59, 14.99)

A1.N3
6.25 

(0.95, 12.51)
1.28 

(0.48, 8.31)
2.03 

(0.28, 9.33)
1.95 

(0.26, 15.21)
6.81 

(1.05, 15.01)

M
V

 I
nc

lu
de

d A2.N1
7.08 

(1.23, 12.77)
2.92 

(0.83, 11)
3.50 

(0.65, 12.21)
3.49 

(0.73, 15.90)
7.53 

(0.23, 16.95)

A2.N2
6.62 

(0.39, 12.51)
1.75 

(0.52, 9.13)
2.71 

(0.16, 12.16)
2.49 

(0.32, 14.42)
7.17 

(0.42, 16.48)

A2.N3
6.68 

(0.80, 12.49)
1.73 

(0.47, 11.16)
2.71 

(0.28, 11.61)
2.55 

(0.20, 15.22)
7.21 

(0.76, 15.54)

 M
V

 I
m

pu
te

d A3.N1
7.72 

(2.23, 17.47)
3.29 

(1.70, 15.28)
4.03 

(1.79, 15.49)
3.87 

(1.72, 15.90)
8.03 

(2.38, 18.01)

A3.N2
7.10 

(0.39, 15.96)
2.15 

(0.52, 13.60)
3.10 

(0.45, 14.64)
2.98 

(0.38, 14.42)
7.35 

(0.56, 19.25)

A3.N3
7.07 

(1.01, 18.34)
2.13 

(0.47, 13.64)
3.10 

(0.33, 16.02)
3.04 

(0.28, 15.22)
7.35 

(1.08, 18.68)

Table 3: Summary of CV using 9 statistical approaches among TSM and TEM. 

TSM: We found that median value of CV is lowest in FFPE using 
all the statistical approaches. Furthermore, within FFPE, the 
normalization method N3 has the minimum value of median CV 

for each analysis method. Overall, the minimum median CV is for 
A1.N3 in FFPE.
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TEM: We have the minimum median value of CV in TX.MAX. 
We found A1.N2 has the minimum value of median CV.

TSM×TEM: We have the minimum median value of CV in FR_
MAX followed by FFPE_SDS.MAX using all the approaches. We 
found A1.N3 has the minimum value of median CV in all the 
groups except for A1.N2 in FR_SDS.MAX. Overall, the minimum 
median CV is for A1.N3 in group FR_MAX.

Based on median CV, FFPE is a better choice than FR using all 
the statistical approaches. Similarly, among TSMs, TX.MAX has 
the least CV and can be a better choice. However, based on the 
maximum value of CV, MAX is a better choice for TEM. If we 
consider approaches (A2 & A3) having greater number of proteins 
and TEM within FFPE, we see that A3.N3 in FFPE_SDS.MAX is 
having the least median CV (1.63). 

Contribution of Sum of Squares (SS) due to each 
component

The percent contribution of SS due to each variable to the total SS 
was computed for each protein. A summary of contribution of each 
variable to the total variability is given below in Table 5. We found 
that the TSM has the least contribution to the total variability 

whereas interaction term has the maximum contribution (SS
TSM

 < 
SS

TEM
 < SS

TSM×TEM
). The imputation method leads to decrease in the 

SS contribution due to each variable. The proportion of proteins 
showing significant effects due to TSM, TEM and TSM×TEM using 
9 different approaches are given below Table 6. The proportion 
of proteins showing significant effects due to TSM and TEM and 
their interaction vary with each statistical approach. The TSM has 
the least proportion of significant proteins as compared to those of 
TEM and TSM×TEM. This shows that TSM has the least influence. 
Furthermore, the imputation approach has the least proportion 
of significant proteins. This shows that imputation of MVs is a 
better approach for analysis as it leads to reduction in variability 
and increase in the number of proteins assessed for analysis.

Analysis for imputed data using VSN

We used ANOVA to test the significance of proteins based on 
TSM and TEM. The plot of CV of the proteins in increasing order 
of p-values based on A3.N3 for TSM and TEM are respectively 
given below in Figures 2 and 3. There are respectively 261 and 
296 proteins showing significant effects due to TSM and TEM. 
From Figure 2, we see that FR has more CV as compared to that 
of FFPE for most of the proteins. From Figure 3, we found SDS.

SSTSM SSTEM SSTSM×TEM

M
V

 E
xc

lu
de

d A1.N1
9.86 

(0, 68.98)
20.9 

(0.47, 36.32)
32.87 

(0.29, 54.41)

A1.N2
14.71 

(0, 78.88)
27.49 

(1.35, 48.44)
43.21 

(0.92, 64.54)

A1.N3
15.05 

(0, 73.78)
26.7 

(2.31, 44.92)
41.88 

(0.59, 65.23)

M
V

 I
nc

lu
de

d A2.N1
10.84 

(0, 83.65)
20.97 

(0.08, 49.47)
33.46 

(0.29, 78.05)

A2.N2
12.59 
(0, 85)

25.56 
(0.06, 54.68)

39.37 
(0.08, 80.29)

A2.N3
12.84 

(0, 88.18)
25.72 

(0.04, 53.37)
40.32 

(0.06, 77.54)

M
V

 I
m

pu
te

d A3.N1
8.52 

(0, 73.76)
18.83 

(0, 40.46)
29.86 

(0.09, 57.77)

A3.N2
11.07 

(0, 85.67)
23.53 

(0.03, 50.93)
37.33 

(0.05, 65.75)

A3.N3
11.18 

(0, 85.31)
23.32 

(0, 49.68)
37.26 

(0.14, 65.32)

Table 5: Summary of the contribution of % SS due to TSM, TEM and TSM×TEM.

NTSM NTEM NTSM×TEM

M
V

 
E

xc
lu

de
d A1.N1 0.65/ 0.62/ 0.33 0.77/ 0.76/ 0.5 0.77/ 0.77/ 0.65

A1.N2 0.84/ 0.84/ 0.72 0.91/ 0.91/ 0.77 0.89/ 0.88/ 0.78

A1.N3 0.82/ 0.82/ 0.71 0.87/ 0.87/ 0.72 0.87/ 0.85/ 0.77

M
V

 
In

cl
ud

ed A2.N1 0.61/ 0.57/ 0.25 0.72/ 0.72/ 0.28 0.79/ 0.79/ 0.49

A2.N2 0.75/ 0.73/ 0.48 0.83/ 0.82/ 0.58 0.87/ 0.87/ 0.68

A2.N3 0.74/ 0.74/ 0.52 0.81/ 0.81/ 0.6 0.85/ 0.84/ 0.67

M
V

 
Im

pu
te

d A3.N1 0.58/ 0.53/ 0.24 0.69/ 0.67/ 0.35 0.78/ 0.77/ 0.52

A3.N2 0.71/ 0.68/ 0.48 0.81/ 0.8/ 0.58 0.86/ 0.85/ 0.69

A3.N3 0.7/ 0.69/ 0.49 0.8/ 0.78/ 0.58 0.84/ 0.83/ 0.67

Note: The result obtained using p-values corresponding to without adjustment, BH adjusted and Bonferroni adjusted are separated serially by slash “/” 
in the table.

Table 6: The summary of proportion of proteins showing effects due to the variables: TSM, TEM and TSM×TEM. 
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MAX has more CV as compared to those of MAX and TX.MAX. 
We applied chi-square test for the proteins having significant 
effects due to TSM and TEM. We found that there is association 
between the TSM and the CV (p-value < 0.001). Similarly, in case 
of TSM, we found that there is association between the variables, 
TEM and CV (p-value < 0.001). We found that the FFPE is a better 
method than that of the FR for tissue storage. Further, we found 
that MAX, the single step approach is better than those of two-
step approach for tissue extraction. The maximum contribution to 
the total variability is due to the interaction effect TSM×TEM and 
TEM. The TSMs and TEMs have significant effects on the protein 
expression. However, the effect due to TSM is the least. In the 
present article, we have used different analysis and normalization 
methods for the proteomics data. The number of proteins for testing 
can be increased by either by including the MVs (A2) or by using 
imputed data (A3). The imputation method (A3) has the least SS 
contribution than those of A1 (complete data) and A2 (unbalanced 
data). We found the least proportion of significant proteins when 
using the imputation method (A3). The normalization method N1, 
i.e., only logarithmic transformation is not suited for analyzing the 

proteomics data. The other normalization methods N2 and N3 
having lesser CV can be a better approach.

CONCLUSION 

Our study discussed the technical issues with a focus on the 
statistical analysis. It will provide better insight to the researchers 
while designing and executing experiments. There may be small 
changes caused during sample handling and storage, different 
batches of buffer, electrospray, instrument components, calibration 
and tuning, etc. While designing any proteomics experiment, we 
must identify the technical steps with large variability. Therefore, 
it becomes necessary to understand the data heterogeneity due to 
biological variability and technical variability of the proteomics 
methods at each step. We have made the proteomics data available 
(Supporting file 1). The researchers involved in proteomics research 
area can use this data for further study. The data can further be 
used for planning new proteomics experiments. In the future, we 
will come up with a rigorous statistical approach using different 
proteomics dataset that could overcome the heterogeneity problem 

Figure 2: Plot of CV (in %) versus the proteins with increasing order of p-values for TSM (FR – red and FFPE – green).

Figure 3: Plot of CV (in %) versus the proteins with increasing order of p-values for TSM (MAX – green, TX.MAX – yellow and SDS.MAX – red).
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caused due to technical reasons in the proteomics data with MVs. 
Finally, we can recommend: (i) FFPE is the better choice than FR 
for tissue storage, (ii) one-step TEM is better than the two-step 
TEM, (iii) Imputation method (A3) is the best approach, (iv) N2 or 
N3 method of normalization should be the preferred choice. 

Supporting Information

Supporting File 1: A label-free quantified data of identified 
proteins.

Supporting File 2: More details about experimental procedures.
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