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ABSTRACT

Systems engineering in program execution identify comprehensive requirements definition as a prerequisite for 
successful programmatic execution. Conversely, not fully defining system requirements is frequently branded 
as being the root cause for programmatic failures. The failures manifest themselves as not meeting performance 
thresholds, exceeding budget, or delivering late. With respect to executing engineering programs in the 21st century, 
and especially for the Department of Defense (DoD) and other Government customers, there are drivers that require 
systems engineers to commence system specification prior to fully defining (or having defined for them) all of the 
system or mission requirements. As such, there is a need for a new method of systems engineering that allows for 
progress in environments of uncertainty – a Sparse Requirements Systems Engineering (SRSE) paradigm. Further, 
a consequence of architecting Learning Enabled – Cyber Physical Systems (LE-CPS) in such a reduced requirements 
environment is the need to assure safe, intended operation. SRSE emulates an incomplete training data set of 
inputs, further increasing the potential for unintended response and operations of such LE-CPS. 
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INTRODUCTION

Part one – Sparse requirements systems engineering

Systems engineering is concerned with distilling customer 
requirements into programmatic and other self-imposed 
requirements. Those requirements further drive component or 
system of systems (SOS) specifications. Throughout the process, 
the Systems Engineer (SE) has to define the methods to integrate, 
verify and validate that the components and SOS that will comprise 
the overall system, and meet the performance, cost and schedule 
requirements imposed by the end user. Illustrative cases in Systems 
Engineering typically focus on programmatic successes with respect 
to performing the complete requirements definition prior to 
decomposition to system specifications. Successful engineering 
projects are claimed to have characteristically taken the required 
time to execute all comprehensive systems engineering prior to 
project commencement and proceeding to the design, analysis and 
procurement phases of the program. It is important that the SE 
exercises due diligence with respect to these responsibilities lest 
inadequacies remain undetected until late in the build cycle, where 
disruptions to resource loading, budget and schedule are greater 
than if such shortcomings had been detected earlier. 

Conversely, breakdowns in engineering program execution 

and delivery are often tied to a failure to adequately define the 
system at the onset of program execution. Such failures manifest 
themselves as not meeting performance thresholds, exceeding 
budget, or delivering after due dates. They are blamed on a 
variety of traditional reasons, such as “the customer changed the 
requirements” (failure to deliver performance), “the program 
schedule was unrealistically aggressive” (failure to deliver on time), 
or “the Business Development Team bid to win instead of bid to 
make money” (failure to deliver to the budget) [1].

With respect to executing engineering programs in the 21st 
century, there are drivers that require SEs to embrace all of the 
horrors attributed to inadequate systems engineering; namely, 
how one defines and delivers when not all of the requirements or 
specifications are fully determined before design and procurement 
must commence. The drivers for the commercial world are often 
schedule and budget: e.g., competitive time to market, limited 
financial resources for developmental efforts, or execution prior 
to constituent component or subsystem obsolescence. Similarly, 
the Government end user might be responding to an immediate 
need identified by the war fighter in the field. U.S. Government 
acquisition reform was undertaken in 2003 because previous 
procurement guidelines dictated that it literally took decades to 
field new weapons systems [2].
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Principally for the government customer, the need to execute with 
speed is not driven by profit or shareholder value, however even 
more dire consequences can result from failure to move concisely. 
The need to acquire rapidly are due to a number of considerations, 
among them are: identification of a capability required for the war 
fighter already in theatre, the discovery of an adversary capability 
that needs to be immediately countered, or (in the case of space-
based capabilities) having to meet an immovable deadline (such as 
a launch date dictated to accommodate celestial mechanics). So 
important is the objective of swift acquisition (acquisition in the 
sense of having received from the supplier and ready to deploy the 
desired capability), that these U.S Government organizations have 
stood up their respective offices to insure such:

•	 U.S. Army - Rapid Equipping Force [3].

•	 U.S. Air Force – Space Rapid Capabilities Office [4].

•	 U.S. Navy – Maritime Accelerated Acquisition [5].

•	 U.S. Marines – Rapid Capabilities Office [6].

•	 NASA – Rapid Spacecraft Development Office [7].

The yearly war games exercise covering the defense of Taiwan from 
a Chinese invasion, was recently (2021) won by the U.S. but at an 
enormous cost to life and equipment, yet is a better outcome than 
similar exercise in 2017 and 2018. The 2022 exercise is expected to 
further improve by determining what mix of aircraft, unmanned 
systems, data transport networks and other systems will be needed 
to defeat China in a potential conflict. Lt. General Clint Hinote, 
the U.S. Air Force’s Deputy Chief of Staff for Strategy, Integration 
and Requirements commented on our adversary’s agility: “China 
is iterating so rapidly, and I think that forces us to change. If we 
can change, we can win’” But General Hinote is not referring to 
winning in the traditional military sense: ‘We’re trying to help 
people see the future, what it might look like, the types of choices 
it would take to win a war…the evidence based possibility that if we 
were able to change, we probably wouldn’t have to fight, and that’s 
a reason [in and of itself] to change” [8].

The common thread is that as our adversaries (either commercial 
or military) become more agile, our own system delivery must 
be executed more rapidly, especially if it is accompanied by the 
challenges of a less-than-fully-defined system. Further, engineers 
will be required to minimize the issues that missing requirements 
generate. As such, there is a need for a new method of systems 
engineering when uncertainty is an integral element of the effort. 
The International Council on Systems Engineering (INCOSE) 
Systems Engineering Book of Knowledge (SEBOK) mentions the 
concept of incomplete requirements only twice in all of its 1063 
pages, and then only as something to be avoided [9].

One can craft a new term: Sparse Requirements Systems Engineering 
(SRSE). While hardly known by this label, most systems engineers 
have been forced to work under such time, resource and a-priori 
knowledge constrained conditions. Indeed, having all of the 
requirements necessary before commencing on system architecture 
is almost a luxury in many fields. Historically, programs (especially 
large and complex ones) that have eagerly commenced execution 
without complete and correct requirements have tended to 
experience significant increases in costs and schedule. Trying to 
operate a program utilizing legacy systems engineering tools and 
carrying incomplete or deferred requirements, is incongruous 

with purposely executing under those conditions. Some of 
these complications have been so great as to result in program 
cancellations [10].

Therefore, the following differentiation must be recognized before 
proceeding: SRSE is not synonymous with inadequate systems 
engineering. SRSE is a conscious decision to proceed toward system 
definition, design and procurement before all requirements are 
fully defined and with an acceptance of any additional associated 
risks. This implies also carrying forward the risk mitigations as 
desired (including their additional costs), an awareness that the 
system performance and the final design iteration will become fully 
defined at some point later in the integrated product lifecycle, and 
an acknowledgment that the final deliverable may not meet 100% 
of the system design objectives (but will likely be “good enough”). 
By contrast, inadequate systems engineering is comprised of: 

•	 Accepting a fully defined set of requirements, but limiting 
the application of analysis and design trade tools to 
examine all alternatives before settling on a particular 
design implementation, either through conscious decision 
or poor execution. 

•	 Not performing due diligence and commencing on design 
while requiring a complete set of requirements, but failing 
to obtain them all

Being mindful of the distinction, it can be ascertained if an SRSE 
approach is warranted for a particular objective.

METHODOLOGY

Motivation and execution mode selection

There are many reasons for wanting to move a program along as 
expeditiously as possible: 

•	 Time to market and competition considerations; providing 
a product to satisfy market demand

•	 Programmatic milestones correlated with award funding 
availability

•	 Addressing the needs of warfighters already in theater 

•	 Immediate deployment of a system to counter a newly 
discovered adversary capability

•	 Executing under a quick reaction capability paradigm

•	 Rapid capability reconstitution or technology insertion

Not being able to fully define a system may be due to issues beyond 
control. For example, in the case of developing a countermeasure 
to an adversary’s newly discovered offensive system, the initially 
observed capabilities are unlikely to be complete or be fully 
ascertained. The full knowledge of the opponent will evolve as 
intelligence and subsequent experience in the field drives revisions 
to initial capability estimates. This in turn will drive amendments 
and additions to the initial system requirements.

Requirements in an SRSE environment can be categorized into 
four types (Table 1).

No matter what the cause, waiting for a system to be fully defined 
may actually be more expensive than starting while system 
definition is still on-going. To decide if that proposition is true, the 
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cost of fully defining the requirements, vs. embarking on a SRSE 
effort has to be evaluated. This can best be done by evaluating the 
following:

Cost = ∑ fully defined requirements costs — ∑ sparsely defined 
requirements costs (Equation 1)

If the value defined in Equation 1 is a positive number, then the 
incentive to proceed under the conditions of a sparsely defined set 
of requirements is present.

The equation seems innocent enough but assigning actual values 
so that each summation is comprehensive can be challenging if 
not impossible. The constituent components that go into each 
summation range from actuals costs, to costs derived from “similar 
to” prior experience, from estimates to guesses. Correspondingly 
the fidelity of such individual contributors to the equation decreases 
as one goes from “known” to “guesses.” The span of what has to 
be studied is considerable. When analysing the cost of executing a 
program with fully defined requirements vs. a SRSE type program, 
some costs will be very similar if not completely common to both, 
such as final assembly, integration and testing. It will be the more 
major differences between the two that go into the Cost analysis 
that we are most concerned with in Equation 1.

Costs associated for program execution with fully defined 
requirements

While carrying out extensive requirements analysis and 
comprehensive risk burn-down, there are costs associated in 
addition to the direct Systems Engineering costs. These are 
the often-overlooked Program Office: program management, 
project engineering, information technology, configuration 
management, administrative assistance, contracts, purchasing, and 
mission assurance (aka “Quality Control”). Further, there are the 
overhead costs associated with this standing army of personnel; an 
engineering salary comprises roughly 40% of the per-hour cost to a 
company: vacation & benefits, facilities, operations…the additional 
costs are interminable. Travel, material, software, computers, and 
office products comprise other direct costs (ODC). Loss of revenue 
due to delay in market entry, allowing competitors to seize the 
consumer high ground (there is a saying among DOD system 
providers with respect to market share: “the first hog to the trough 
wins”) has to be factored in. Reduced product life as time spent 

fully defining a system eats into the amount of time the deployed 
product is relevant to its purpose; in other words maximizing time 
to obsolescence. 

The funding profile for this type of execution is expected to be 
heavy on labor during the Systems Engineering and early design 
phases, followed by material acquisition. Costs are principally 
labor-only during assembly, integration, test (AIT) and delivery 
(unless new test equipment or infrastructure is required to support 
such activities).

Costs associated with sparsely defined requirements

The costs capturing associated with SRSE efforts require more 
diligence than the traditional fully-defined requirements type 
of execution, because this type of program execution will entail 
early material purchases in addition to the systems and design 
engineering that commence early in the program, as well as the 
need to support parallel development efforts. The funding profile 
for this type of execution is expected to very front-heavy due to 
material acquisition and commitment to long-lead items, followed 
by tapering off to a spend rate driven predominantly by labor for 
most of the remainder of the program (again, AIT activities). 

It is important to continuously re-examine the program as a 
whole and not get lured into looking at small portions, however 
problematic certain elements may seem to become. This is to 
prevent being encumbered by a large number of unconsidered 
unknowns (as opposed to a large number of TBDs and TBRs) 
which will drive additional unplanned expenditures for materials 
and labor, well into program execution, causing the program to 
come in over-budget. 

Parallel path developments as part of risk mitigation and 
to ensure design and program progression are up for 
consideration when figuring costs

•	 It is advantageous to utilize components that are common 
to co-supporting multiple design paths, vs. components that 
are unique to each individual design path. Economy of scale 
and fewer sources to manage are primary benefits; the need 
to maintain fewer on-hand spares as a percentage is a cost 
saver as well. 

Table 1: SRSE requirement types.

Requirement Type Definition Example

Fully defined 
Subsystems characteristic that have to be met; no 
compromise is allowed

Mission duration, flight altitude, type of host platform (specific aircraft 
or satellite bus), sensor metrics (waveband, NIIRS, SNR, P

d
, P

fa
)

Not-to-exceed limitations (power, volume, heat dissipation, weight)
Pre-defined interfaces

Undefined
Parameters that have to be met but the final values 
have yet to be determined;  intermediate  to-be-
revised (TBR) values are allowed

Sensor architecture (a camera’s format: X pixels by Y pixels)
Final values for sensor figures of merit, payload power, payload weight, 
sensor frame rate

Negotiable

Values that require specification, in order to 
simplify the system architecture; penalties for 
variance are able  to be accommodated. A defined 
range of values is allowed

Example 1) The figures of merit of a component system can be 
specified, but the risks of a developmental program (cost overruns, 
late delivery and sub-optimal performance) to deliver a custom system 
may be unacceptable. Alternatively, an existing system that is close to 
specification may be selected, and a reduction in desired performance 
may be accepted in trade in order to mitigate risks to schedule and cost.  
Example 2) The share of platform power and volume available for a 
particular subsystem, at the expense of other subsystems.

Dependent
A subsystem characteristic that relies on another 
subsystem’s final definition

Available SWaP based on final aircraft or spacecraft bus selection; sensor 
type(s) based on final mission requirements definition
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o	 Self-reconfigurable

o	 Auto-retasking [11].

With respect to the timeline

o	 Previously deployed systems may have to be interfaced 
to and be interoperated with, so elements of backward 
compatibility for information interchange may be required 
[12].

o	 Immovable deadlines must be accommodated; war fighter 
needs, major deployment operations, spacecraft launch 
dates, new product introductions

The incorporation of the ability to define performance and function 
late in the build cycle or while in the field through component and 
subsystem performance margin, increases the duration of system 
relevance after deployment. But as such additional margin requires 
additional capability, it must be remembered that additional 
capability requires additional SWaP/C. 

Minimizing requirement changes

Scope changes are a major source of program disruption; they cause 
delays, increased costs, and risks to meeting SOS performance 
objectives. One of the ways to reduce the disruption caused by 
changing requirements is to reduce the period of time that changes 
can be accepted. There are a number of tools available to help 
minimize scope creep: 

Reduce the overall program duration:

o	 Carry out as many paths concurrently as possible. This 
may be difficult to accomplish in all cases, as the proverbial 
“a baby can’t be made in one month by nine women” 
frequently applies. There are certainly operations that have 
to be carried out serially as with any program execution, 
but beware of the tendency to determine a schedule based 
on assumptions made by similar, previously executed serial 
programs. Question assumptions and lessons learned, and 
their applicability if based on prior work. 

o	 Schedule Reductions can be accomplished by parallel 
loading personnel; however this entails utilizing resources 
as defined by skill code, and abandoning identifying specific 
individuals for roles unless absolutely necessary and defined 
by person-specific capabilities.

Commit to points of no-return early:

o	 Committing to long-lead items can “seal the deal;” it is 
impossible to accommodate requirement changes after 
committing to a particularly unique piece of hardware that 
comprises a significant portion of the SOS, especially when 
that item involves a substantial portion of the budget. 

o	 Key personnel required for early stages of trade space 
analysis can force an end-user’s hand by acknowledging 
that exhaustive, continuous trades and redesigns cannot be 
accommodated open-ended.

Remove schedule margin:

o	 Engineers typically like to have some margin in cost and 
schedule and find ways to sneak them into the Integrated 
Master Schedule. When trying to minimize the opportunity 

•	 It is advantageous to develop software/firmware (SW/FW) 
that is common across multiple design solutions, but that 
may not be possible. Modular open standards architecture 
(MOSA) for software/firmware is anecdotally believed to 
be advantageous, but each program is unique and there 
are many instances where dedicated SW/FW costs less to 
develop and the host hardware space, weight, power and 
cost (SWaP/C) burden is lower. 

•	 Assigning a dollar value to the risks of having to make 
system specifications changes to a system already proceeding 
under full steam because as the requirements become more 
fully defined later in the build cycle is a complex challenge. 
The “roll of the dice” with SRSE is that at least one of the 
designs being carried forth is able to accommodate the 
requirement changes later in the build cycle with minimum 
costs to budget and schedule.

One additional element in determining if a SRSE approach is 
warranted, beyond the desire to move expeditiously, is the contract 
type. A Cost-Plus Percentage or a Cost-Plus Fixed-Fee may be 
better served by a traditional, fully defined requirements type of 
program; there is little incentive to control costs that are borne 
by the customer. But SRSE execution could offer a Firm Fixed 
Price or Quick Reaction Capability/Best Effort program some 
cost and schedule advantages, such as increasing the profit margin 
of the overall budget. Such is to be negotiated among all of the 
stakeholders.

Enablers

Once a SRSE approach has been made, there are design 
considerations that must be included so that the system maintains 
as much flexibility in delivering performance and meeting the 
requirements, as late in the build cycle as possible and even after 
placed in situ, such as the following examples suggest:

Hardware that allows for reconfiguration:

o	 Field-Programmable Gate Arrays (FPGAs) with reprogram 
capability

o	 Tunable radio frequency filters

o	 Common optical path/common aperture for multi-
waveband sensors

o	 Digital-pixel Read Out Integrated Circuits (DROICs) w/
software defined reconfigurable read

Software defined systems for reconfiguration or upgrades:

o	 Waveforms for telecommunications

o	 Updatable modem processing chain elements for RF and 
laser communication systems

o	 Processing algorithms (for sensor data, etc.)

o	 Interfaces - MOSA supporting common interfaces

	 Sensor open systems architecture

	 Future airborne capability environment 

Software/firmware:

o	 Common interface soft blocks

Artificial intelligence/machine learning:



5

Gosian G, et al. OPEN ACCESS Freely available online

J Def Manag, Vol. 11 Iss. 6 No: 220

for a stake-holder to change requirements, use a 100% 
success approach, especially for processes that are well 
defined and have a high manufacturing readiness level 
(MRL) application factor. 

o	 Question (even blindly) every estimate provided by the 
program staff as to how much unnecessary margin is being 
retained 

o	 Schedule margin should be generated, retained and 
dispensed by the Program Manager

	 The PM has final authority for program execution, 
schedule and budge adherence.

	 The PM and Project Engineer have authority to assign 
schedule margin as an element in risk mitigation (for 
re-work, second “spins” of design and fabrication, etc.)

Identify changes as “Out of Scope”:

Programs are executed to contracts, and contracts are specific 
as to what the final deliverable shall be. While caution should 
be observed with regard to protecting a relationship between a 
Stakeholder and the SOS provider, changes in requirements can be 
identified as having both cost and schedule impact. The End User 
will want to change things as long as there is minimal impact. By 
identifying that the smallest change has implications to the budget 
due to:

	 Overhead costs associated with increased the contract 
period of performance

	 Increased labor costs as less efficient personnel are 
brought in to cover previously scheduled resource roll-
off. New personnel have to be brought up to speed on 
program execution; new personnel may be less experienced 
and require more hours to accomplish what seasoned 
professionals can provide.

Accommodating unavoidable requirement changes

No matter the effort to minimize them, requirement changes are 
bound to occur to some extent during program execution. They 
could be the result of newly available technologies that become part 
of the SOS design, or the need to change SOS capabilities. The 
danger of accepting changes after execution begins will come in the 
form of resistance to backtracking within the program. Resistance 
will come from internal management who wants to close the 
contract and deliver the system, as well as from the End User once 
the costs to accommodate requirement changes are identified. 

As an example, suppose the change request came after a successful 
Critical Design Review. The CDR is an activity that is time and 
cost intensive; it may also represent a payment milestone. Program 
Management is inclined to keep the customer happy by not 
imposing additional fees to execute a Delta-CDR (a CDR that 
captures changes or open items from the CDR that require close-
out), and the customer would certainly prefer not to pay them 
or accept the schedule burden. However, changes to an already-
designed system have to be analysed with respect to impact to other 
systems, to interfaces, to Beginning-of-Life (BOL)/End-of-Life 
(EOL) performance.

Nonetheless, any requirement changes accepted must be categorized, 

because only one type of change comes with unavoidable costs, and 
that is the “must have” requirement. The other requirement change 
categories are “nice to have” and “gold plating,” neither of which 
should be acceptable if they cause impacts to cost and schedule. 
Every new requirement or “to be determined (TBD)” retired, 
should be tracked in a scope log. Initially identified TBDs should 
be accounted for in the initial budgetary estimate; unplanned scope 
change costs and are to be fed back to the customer as financial and 
schedule overruns (which will generate an incentive in the customer 
to minimize scope creep). Again, minimizing cost and schedule is 
the goal of SRSE, so all efforts should be taken to remain true to 
its objectives [13].

Executing in a SRSE environment requires that an atmosphere of 
trust exist between all stakeholders, otherwise the march towards a 
common objective will degrade into a string of activities that have 
no further objective other than the covering of one’s own behind. 
Chief among the ideals that must be exercised is an understanding 
that the rapid execution will lead down engineering cul-de-sacs, with 
associated costs and schedule that are inevitably lost, discarded, or 
useless in the final design iteration. Associates cannot be punished 
for telling the truth about such dead-end pursuits; their info has to 
be treated as input and updates to the tracking tools. 

Additionally, customer expectations must be managed (especially 
up front). Written contracts addressing agreed upon goals and 
deviations allowed need to be revisited often so there is no possibility 
that any stakeholder acts astonished and presents a “I never knew 
we weren’t going to be getting X, or Y, or Z” posture. Establishing 
clear lines of frequent, recorded communication is useful to help 
keep expectations consistent and prevent unreasonable hopes, 
but it is still no guarantee of end-user happiness with program 
deliverables.

Finally, as for the contracted company providing the system, SRSE 
is being undertaken in an era of limited budgets and tight cost 
controls. A system provider should not accept penalty clauses when 
delivering on a SRSE effort, because there will almost assuredly 
be some differences between the contracted-for and the delivered 
system. It is not desirable to be penalized for missing a delivery by 
one day or a performance metric by 2% due to execution under SRSE.

Risk

It can be assumed that risk is minimized when programmatic 
requirements are fully defined. However, when the requirements 
are sparse and the system isn’t fully defined, risks will be Present 
and must be tracked and quantified, either with a dollar amount, 
a schedule impact (delay), a reduction in performance or all three. 
The Risk Cost is calculated by multiplying the Impact by the 
probability, as would be determined in any nominal programmatic 
risk analysis. The probability is defined according as one of 
three types: the probability of occurrence if nothing is done, the 
probability of occurrence with some mitigation plan implemented, 
and the probability of occurrence with a fully defined recovery 
plan. Each of these risk types has successively lower impact. The 
cost of each individual risk can then be calculated:

Risk Cost=Impact × probability of occurrence                               (2)

For the fully defined system, it is expected that the risks are minimal.

For the Sparse Requirements Systems, the risks are present but well 
defined.
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No matter which type of program execution is chosen, it can 
be difficult to determine costs as risks are not fully understood, 
identifiable or can be assigned an impact. However, as risks 
materialize, their impacts will manifest themselves upon the end-
user and supplier as additional cost and schedule delays. The 
contract type defines who it impacts: 

•	 Cost-plus programs (cost plus fixed-fee, cost-plus fixed 
percentage) impact the customer

•	 Fixed-price programs impact the supplier with cost, and the 
end user with schedule [13].

But as the field of Risk Management is well covered by any number 
of seminal texts, the author refers the reader to them and will not 
address risk management any further herein.

Part two - Implications of SRSE for assured autonomy

As the 21st century has seen the advent of systems that implement 
artificial intelligence and machine learning along with operational 
autonomy, there are implications for utilizing sparse requirements 
systems engineering on autonomous systems:

•	 A fully defined input environment is absent by sole virtue of 
utilizing SRSE. Without a fully defined set of requirements, 
the complete set of inputs cannot be described. 

•	 A fully defined output or set of responses by learning 
enabled systems is absent, by virtue of the definition of 
learning enabled systems. They are relied upon to determine 
their own reactions based on inputs and how their input 
classifiers work upon deployment as well as how they evolve. 
In the absence of an a priori defined set of inputs, a fully 
defined set of responses is not possible.

Autonomous systems

•	 In order to understand the impact utilizing SRSE has 
on developing LE-CPS, it is sensible to first examine 
Autonomous Systems, those with the ability to accomplish 
their objectives independently without human supervision. 
They are proliferating and the United States Department of 
Defense is particularly interested in incorporating them in 
the array of deployed systems, having identified a range of 
critical capabilities and objectives to support:

Enhanced situational awareness

•	 Cognitive workload reduction

•	 Force protection

•	 Unmanned vehicle C&C

•	 Cyber defense

•	 Logistics

•	 Image processing & pattern recognition

•	 Sensor information extraction

•	 Satellite constellation management

•	 Underwater vehicle C&C There exist complex and 
unpredictable environments where autonomous systems 
can generate what DARPA (the Defense Advanced 
Research Projects Agency) calls “high regret unintended 

consequences,” such as the much-publicized Tesla 
automobile crashes where the failure of the autonomous 
driving systems has generated fatal results [14].

If trust in autonomous systems cannot be guaranteed, then such 
systems will either:

•	 Not be adopted or deployed.

•	 Be deployed with an acceptance of potentially undesirable or 
unsafe operation, along with the unintended consequences 
and damages [15].

According to Dr. Sandeep Neema, a DARPA Program Manager, 
several factors impede the deployment and adoption of autonomous 
systems:

1.	 In the absence of an adequately high level of autonomy 
that can be relied upon, substantial operator involvement 
is required, which not only severely limits operational gains, 
but creates significant new challenges in the areas of human-
machine interaction and mixed initiative control (human 
vs. AI prioritization of commands).

2.	 Achieving higher levels of autonomy in uncertain, 
unstructured and dynamic environments, on the other 
hand, increasingly involves data-driven machine learning 
techniques with many open systems science and systems 
engineering challenges.

3.	 Machine learning techniques widely used today are inherently 
unpredictable and lack the necessary mathematical 
framework to provide guarantees on correctness, while 
DOD applications that depend on safe and correct 
operation for mission success require predictable behavior 
and strong assurance.” [16].

There are three environments that the LE-CPS will operate in:

1.	 The cooperative environment: All LE-CPS elements share a 
common objective and cooperate to achieve their individual 
objectives as well as facilitate other LE-CPS’ member 
objectives. Such actions may involve communicating intent 
and sharing telemetry.

2.	 The non-cooperative environment: Like the cooperative 
environment but with no coordination among constituent 
group members. This environment merely assumes that all 
members are working toward their respective individual 
goals with no coordination among any constituent member. 

3.	 The uncooperative environment: Where other elements in 
the environment, not necessarily part of an extended group, 
are actively seeking to prevent achievement of mission 
goals. This may be through hostile intent (e.g. - attack with 
weapons systems) or manipulation of the environment (e.g. 
– GPS “spoofing).

The autonomous system has to be able to demonstrate safety that is 
as good as or better than comparable systems operated by humans 
(with the assumption that safe operation of any system is the 
objective; malicious use is specifically excluded from this premise). 
To that end, the goal of the [DARPA] Assured Autonomy Program 
is to create technology for continual assurance of Learning-
Enabled, Cyber Physical Systems (LE-CPSs). Continual Assurance 
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is defined as a guarantee of the safety and functional correctness of 
the system:

•	 provided provisionally at design time

•	 Continually monitored, and updated 

•	 Evaluated at operation-time as the system and its 
environment evolves [16].

This may be less of a challenge when operating in a cooperative 
environment, such as the autonomous operation of vehicles driving 
on a divided highway: all vehicles are travelling in approximately 
the same direction, at approximately the same speed, with similar 
objectives to completing a journey safely. Events such as a child 
chasing a ball onto the road surface, on-coming traffic venturing 
into our path, or cross-street traffic causing a conflict, while 
all low-probability events in this scenario must nonetheless be 
accommodated and corrective actions anticipated. A suitable 
response to these conflict examples might be to bring vehicles to 
a halt to avoid the conflict, and then resume once the conflict is 
resolved.

At the other end of the spectrum, an Unmanned Aerial System, 

such as a combat aircraft, may operate in a cooperative environment 
with other same-force assets, but most assuredly will operate in 
an uncooperative environment, one which is adversarial and 
specifically designed by the enemy to present situations intended 
to elicit unplanned responses, presumably with the objective of 
gaining superiority in an engagement. 

Challenges for autonomous systems

The Institute for Defense Analyses has identified ten challenges 
for test and evaluation, verification and validation, specific to 
autonomous systems (Table 2).

Autonomous system assurance 

Non-learning systems: Currently, autonomous system assurance 
can be achieved for non-learning systems. Such systems are based 
on fully defined set of operational stimuli and a closed set of known 
responses (aka “evidence”). The system model is subjected to formal 
verification, with simulations covering the full range of stimulus 
and response; inputs that are unrecognized are dismissed as outside 
of the input space and not acted upon. Comprehensive testing 

Table 2: Ten challenges for autonomous systems.

S. No           Autonomous System                                                                  Function

1 Instrumenting machine thinking
Diagnose the causes of incorrect behaviour. Engineering:  coding errors, bad algorithms, and 
inadequate training data. Operational: perception, sensing, algorithms, actions taken.

2
Linking system performance to 

autonomous behaviours 

Understanding how the system’s various autonomous capabilities interact to enable or hinder 
mission execution. Requirements: The requirements specification for autonomous behaviour is can 
be problematic if the specifications are incomplete and based on human behaviour analog.

3 Comparing AI models to reality 

Degree to which the internal modeling of reality supports accurate Perception, valid Reasoning, and 
effective Selection. Not generally a function of how detailed the model is (resolution) or how closely 
the models represent reality (fidelity). It is a function of whether the right information is incorporated 
into the model and that the resolution and fidelity are sufficient for mission needs

4
CONOPS and training as design 

features 

Traditional systems engineering develop CONOPS and training are developed after the technical 
solution. For autonomous systems, where the system operates itself and interacts autonomously with 
humans, the CONOPS, tactics and training) are part of the system design, and  will have to be 
identified, verified, and validated much earlier in the development process. 

5 Human Trust

In human-machine teaming (HMT) contexts, how the humans behave (and thus how well the system 
performs) depends in part on the humans’ psychological attitudes toward the autonomous systems.  
“Trust” is the term generally used to describe those attitudes, though in practice those attitudes are 
generally more nuanced and multi-dimensional than simply asking “how much do I trust it?” In 
order to design, debug, and assure performance, TEV&V will need to be able to measure the various 
dimensions of trust, to support understanding of how trust affects human/autonomous system 
performance. 

6
Elevated safety concerns and 

asymmetric hazard 

Autonomous systems potentially take many of the decisions underlying routine safety out of the hands 
(and minds) of operators, and depend instead on complex software that allows the system to “operate” 
itself. During Developmental Test and Evaluation and into Operational Test and Evaluation, it is 
likely that the software will still contain major bugs and that the algorithms and training data being 
used might not be the final choices. The potential exists - especially for weapon systems, highly-
mobile systems, or other systems that could be dangerous in the hands of an unreliable operator, 
for circumstance to develop that are hazardous not to the autonomous system, but to the humans 
interacting or in close proximity. Few active research programs today are addressing applications with 
highly asymmetric hazard functions

7 Exploitable vulnerabilities 

AI based on machine learning has its own set of potential vulnerabilities (cyber, electronic, physical), 
both during training of the AI and in operation. There are circumstances where they are more 
vulnerable than comparable human operated systems. TEV&V of autonomous systems will need to 
be aware of this expanded attack surface. 

8 Emergent behaviour 

Unanticipated emergent behaviour resulting from the effects of complex operational environments 
on autonomous or semi-autonomous systems. Developing T&E methods to analyze the potential 
for emergent behaviour in order to avoid it will be central to providing assured dependability for 
autonomous systems.
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prior to deployment prevents unanticipated system actions and 
assures desired autonomous behavior. The defined safe response 
space that represents desired and safe actions, can be designed 
with sufficient segregation from the unsafe region, that real-time 
monitoring of the actions the CPS are not required (Figure 1) [16].

Non-learning Cyber Physical Systems (CPS) are relatively simple 
in terms of components and interaction. They are composed of 
sensors, actuators and controller/plant components. Like any 
engineering system, a defined set of tests can be applied to insure 
that the requirements of the CPS are as anticipated. Evidence 
(E) is gathered in the form of laboratory and field test data, and 
validation of correct system operation supports the claims of 
safety and security, assurance being comprised of a logical chain of 
evidence supporting a claim (Figure 2). The assurance that can be 
claimed is limited by the testing that is executed.

Incorporation of system models: By adding comprehensive system 
models of the components of the non-learning system, the CPS 
can be defined with a higher degree of operational fidelity, and 
the claims of assurance are strengthened. The model validity is 
confirmed by its prediction of stimulus/response as observed in 
training data in controlled environments. It can also be utilized to 
judge responses to expected stimuli that have not been presented 
in training data sets through simulation and model-based formal 
verification. Overall, adding a system model can provide additional 
avenues of system behavioral prediction (interpolated or reasonably 
extrapolated) to provide further evidence of assurance (Figure 3). 
Models typically employ simplifying assumptions so they are not 
100% representations of reality; as such testing is still required to 
validate the models [16].

Learning systems: Unlike non-learning systems, learning systems 
cannot offer the guarantees of intrinsic high-regret unintended 
consequence avoidance. The initially trained response space is 
subject to modification due to the system being inherently able to 
modify its response to inputs that lie outside of the initial training 
input data. The response space is no longer fixed with well-defined 
boundaries; it is free to grow beyond what was initially defined and 
to capture it completely is an impossible task. Besides the objective 
of delivering desired behavior, the learning system must prevent the 
response space from degenerating into the unsafe system operation 
region. The formal methods of software engineering can be applied 
to autonomous system development to the extent that as much 
about behavior can be designed into the system during creation as 
possible, to keep the scope of empirical testing manageable. But for 
learning systems that are constantly evolving, this will not be all-
inclusive because once deployed, any change to the system through 

learning and evolving invalidates all of the assurances initially 
obtain, that is unless reconfirmed with the evolved system [17].

 Adding learning enabled components (LECs) to the configuration 
in the system models as well as in the Autonomous LE-CPS 
itself, introduces uncertainties and only makes obtaining assured 
autonomous operations more difficult. The response space 
broadens, and unpredictable operation is almost a certainty. 

9 Post-fielding changes 

Systems that employ unsupervised learning or adaptive control during operations will change 
their behaviour over time. This creates a need not only for periodic regression testing, but also 
for predictive models of how post-fielding learning might affect system (or team) behaviour. 
Traditional TEV&V is concerned with the effectiveness and suitability of the system as it is today.  
Needing to be able to predict the effectiveness and suitability of the system as it might become is a new 
requirement when compared to non-learning systems. 

10
Verification and validation of 

training data 

Supervised or reinforcement learning depends critically on the data used to train the autonomous 
system. It is an axiom that “the intelligence is in the data, not the algorithm.” Supervised learning 
data must not only be representative of the range and type of data the system will take as input during 
operations, but must also be correctly and completely labeled. This leads to a need for verification, 
validation, and accreditation (VV&A) of the data used to train the AI that is similar to the need for 
VV&A of modeling and simulation. 

Figure 1: Non-learning system architecture.

Figure 2: Non-learning system functional flow.

Figure 3: Non-learning system functional flow with system model 
incorporated.
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Inability to guarantee predictable behavior presents itself and so 
Sclaims of assured autonomy are no longer possible (Figure 4).

The Department of Defense maintains an office of Research and 
Engineering, managed by an Under Secretary [18,19]. Within the 
Office is the Autonomy Community of Interest (COI) Test and 
Evaluation, Verification and Validation (TEVV) Working Group. 
Recognizing that autonomous systems present unique challenges in 
designing for safe and predictable operation, it was acknowledged 
that, 

“The notion that autonomous systems can be fully tested is 
becoming increasingly infeasible as higher levels of self-governing 
systems become a reality. As these systems react to more 
environmental stimuli and have larger decision spaces, the standard 
practice of testing all possible states and all ranges of inputs to the 
system becomes an unachievable goal. Existing TEVV methods 
are, by themselves, insufficient for TEVV of autonomous systems; 
therefore, a fundamental change is needed in how we validate and 
verify these systems. For example, agent- and model-based design 
and verification techniques and simulations are gaining ground 
as methods to guarantee assured safety in multi-agent systems 
in industry; however, acceptance of this paradigm shift toward 
simulation-based validation and verification has yet to replace 
many physical tests in military programs of record.” [20].

Four challenges to autonomous systems were identified in the 
2015-2018 Technology Investment Strategy Report that concern 
assured autonomy in learning systems:

1.	 State-space explosion: Because autonomous learning 
systems have algorithmic decision spaces that are dynamic, 
the outputs are non-deterministic. Further, as the systems 
grow they become increasingly complex; interactions grow 
exponentially and the state space cannot be comprehensively 
searched or tested.

2.	 Unpredictable environments: Autonomous learning 
systems’ objectives are to perform and deliver desired results 
in unknown, untested and even contested environments. 
They include agents capable of making their own decisions. 
As the multiplicity of different situations experienced 
accumulates, the state space of responses grows and 
contributes to the state space explosion. Assurance of 
correct behavior is vital but the potential for unplanned 
action is growing, contributing to the state space explosion

3.	 Emergent behavior: The challenge is to identify and 
constrain potentially harmful behavior at autonomous 
system design time, when the behavior that one wishes 
to control doesn’t emerge until subjected to operational 
environments and stimuli in the field. As the autonomous 
system evolves over time and resembles less and less the 
system initially conceived, seemingly insignificant factors 
can generate wildly unforeseen and undesired actions. 
These emergent behaviors have little if any chance of being 
caught during initial verification and validation testing.

4.	 Human-machine interfacing and communication: An 
autonomous system that is completely defined and won’t 
evolve has no need to generate “trust” in its operation to the 
human monitoring or sharing control. But if the system is 
able to venture into behaviors that are unanticipated, how 
is a CPS to provide assurance? [20].

In order to address these challenges, DARPA identifies two new 
capabilities to be introduced to provide feedback and explanation 
(to the system or to the human on/in the loop) that previously 
unknown stimuli are not generating undesired actions: guarding 
and monitoring. Guarding prevents an unsafe response no matter 
the directive; it is a forcible denial of venturing into unsafe 
operation space. Monitoring is a real-time complete state-space 
description (Figure 5).

But monitoring is not the explanation for system behaviour and 
the monitoring itself can present challenges:

•	 For advanced autonomous systems, a complete state 
description will generally be too complex to be able to 
derive useful information about the system behavior and 
make timely interdictions. The result can be a case of “one 
won’t know ‘what’s enough’ until presented with ‘that’s 
more than enough.’”

•	 Examining a subset of the state description elements to 
limit the complexity runs the risk of being inadequate to 
support behavior explanation. The task of identifying the 
minimal set of measurements that will be understandable 
for diagnosis, prediction, bounding (actions) and 
developing trust in the autonomous system are not trivial. 
Decimation of some elements of a complete description for 
the purposes of manageability runs the risk of overlooking 
key characteristics. 

The lack of a completely known response space has instigated a new 
approach to address assured autonomous operation. DARPA has 
divided the problem of assured autonomy for systems into three 
technical areas (TA’s) (Figure 6). 

 

 

Figure 4: Learning system functional flow.

 

Figure 5: Learning system architecture.
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•	 The TA1 region: Design for assurance, is where 
classical systems engineering makes accommodation for 
incorporation of learning enabled components, and what 
the implications are for formal verification of systems with 
learning enabled components.

•	 The TA2 region: Operate with assurance, is where 
operations incorporate safety features to comprehend 
and act upon real-time monitoring of behavior and safe 
operation. It is not unexpected that the aforementioned 
monitoring and guarding functions reside in this TA.

•	 The TA3 region: Quantify assurance, is where evidence of 
safe operation and actions that supports claims of assured 
autonomous non-anomalistic operation is generated. In the 
best case scenario, a metric is assigned to the operational 
state that can facilitate affirmation of safe operation.

The Learning Architecture last described in Figure 4 is further 
modified by adding additional elements to carry out guarding and 
monitoring:

•	 A Safety Aware Learning capability is added to the 
Autonomy Components of TA2.

•	 Artifacts of the environment and operational goals are 
determined and sent to the Monitor and Guard functions 
from T1 to T2.

•	 Dynamic Assurance Monitors and Guards are implemented 
in TA2.

o	 They function to actively prevent known unsafe system 
responses.

o	 TA2 also provides “return to safe operation” vectors out 
of known unsafe operation space, back into expected 
operation.

•	 A real-time Assurance Measure is utilized to provide closed 
loop feedback to the autonomous component(s)’ learning 
in TA3. 

o	 Previous responses (desired and undesired) are utilized 
to delineate the scope of controller behavior, with the 
objective that such delineation ultimately minimizes 
undesired responses, as described in (Figure 7).

•	 Finally, Dynamic Assurance provides an element of 
quantitative measure of the confidence that the action 

Figure 6: Learning system challenges.

taken is congruent with the actions desired. This includes:

o	 Desired action

o	 Self-safety of the host system 

o	 Safety to entities within the sphere of system influence

Tools for assured autonomous operation

While there the number of software packages that facilitate nearly 
all traditional engineering (computer aided design, finite element 
analysis, computational fluid dynamics, multi-physics analysis), 
there are currently few that facilitate design and analysis of 
autonomous system architectures, let alone provide environments 
within which such systems can be stress tested and safe operation 
(or lack of it) confirmed.

Architectural Analysis and Design Language is a modelling tool 
that supports software and hardware modelling to master complex 
systems; autonomous system architecture and the means to ensure 
safe operation can be captured within its framework. The field of 
autonomy assurance is dynamic, and while certainly not the only 
tool and method, assurance case languages based on architectural 
models are finding favour in determining the required constructs 
for safe operation of complex autonomous systems. One such 
environment, Resolute, tracks design changes that might invalidate 
some aspect of an assurance case [21-23].

Assurance Monitoring and Control provides an environment 
where stimuli which were not part of the initial training data are 
accommodated (Figure 8).

•	 Safe Reinforcement Learning enables adaptation to and 
incorporation of previously un-encountered operational 

Figure 7: Learning system functional flow with system model, dynamic 
assurance, assurance monitors and guards, and safety aware learning 
incorporated.

Figure 8: Assurance monitoring & control.
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Figure 9: Design for assurance.

stimuli, by insuring that the Learning Enabled Components 
are able to comprehend the new environment. The new 
stimuli are managed by the most appropriate decision 
and classification algorithms so that adherence to a safety 
paradigm is followed.

•	 Enforcing Safety Constraints insures that System Responses do 
not stray from reliable, predictable or recoverable behaviors [24].

•	 Application of Covariate Shift determine if there’s been 
a significant difference between training data set and 
real-world stimuli that requires system retraining or other 
adjustments to the CPS and system model to re-assure safe 
operation [25].

The formal representation of assurance can impose a significant 
computation penalty on the system, manifested as SWaP/C, as 
verification of desired actions must be carried out in near-real 
time. Any trend toward unsafe operation must be corrected almost 
immediately before “high regret unintended consequences” are 
generated [26-30].

Engineering for assurance 

In order to achieve autonomous system operational assurance, 
systems engineering, analysis, design, and the required engineering 
disciplines are implemented to define the system. Requirements 
are linked to behaviour of the passive and learning enabled 
components; these in turn drive specification of neural networks, 
decision trees and other classifier/decision algorithms. Formal 
Verification, traditionally implemented as functional testing, 
provides stimulus/response Conditional Evidence of desired 
behaviour based on training data sets. Simulated Environments 
provides further Conditional Evidence of desired behaviour for 
input stimuli outside of the initial training data set. Conditional 
Evidence can be thought of as desired responses elicited in well 
controlled stimulus environments (Figure 9).

RESULTS AND DISCUSSION

Sparse requirements systems engineering describes program 
execution in an environment where not all of the requirements 
are fully defined prior to commencement, and is a contemporary 
reality driven by reduced resources available to the system provider. 

All stakeholders must be fully engaged and knowledgeable of 
costs, schedule, expected system performance, as well as risks and 
mitigations of the proposed plans of execution. The execution 
must be approached by carrying a multiplicity of possible designs 
that will span the unknowns of the current solution trade space, 
with a full awareness of the costs and risks associated with each. 
Those designs that are identified as not workable as the program 
progresses and more requirements are levied to more fully define 
the objectives must be left eliminated from the solution space. 
Standard best practices and systems engineering tools and practices 
such as design, analysis, test, comprehensive interface definition, 
remain applicable to the program execution. SRSE is a means to 
allow a program to proceed and minimize costs, schedule, risks, and 
scope creep, while taking advantage of opportunities to accelerate 
delivery. But the advantages offered by Sparse Requirements 
Systems Engineering, such as reduced schedule and costs, can 
deliver for today’s end users if executed properly and attentively. 

Assuring safe autonomous operation in LE-CPS built under 
SRSE paradigm are really two sides of the same coin. It must be 
remembered that LE-CPS cannot be trained with a comprehensive 
set of expected input stimuli and produce a closed set of responses; 
their very nature is to be constructed to respond to new stimuli and 
unanticipated responses are almost guaranteed. The undefined 
requirements in an SRSE approach represent a larger region in the 
unknown stimulus space for LE-CPS. 

•	 With respect to Systems Engineering, those requirements 
that are known are analogous to the initial training data for 
a LE-CPS.

•	 Those requirements that are yet to be determined or 
defined, are analogous to the unanticipated stimuli on the 
input side of a LE-CPS

The TBD requirements for an autonomous system can be thought 
of as a head start toward operation in a new environment, one 
that has the system encountering stimuli outside of the realm of its 
initial training data set, for the undefined requirements manifest 
themselves as lack of operational constraints. Stimuli that do not 
fall into or can be classified as stimuli related to the initial training 
data with a high degree of certainty, have to be treated as new data, 
with the attending risk of unanticipated responses.
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CONCLUSION

So in order to implement SRSE to move quickly and concisely in 
developing and fielding a new system on an abbreviated timescale, 
the additional risk that has to be carried forward is a highly 
likelihood that for an LE-CPS, there is greater likelihood that high 
regret unintended consequences are more likely than for similar 
LE-CPS systems that are granted greater development cycle time. 
The only way to achieve safe operation for LE-CPS, especially those 
created under SRSE, is to eliminate reliance on the requirements 
verification compliance tracking and verification Validation 
approach of classical systems engineering:

•	 Formulate assurance cases for learning systems and 
determine how to derive evidence of correct operation

•	 Implement n-dimensional correct response spaces and 
employ a means to return the system to safe operation when 
a generated response to a stimulus is unsafe or undesired

•	 Incorporate a means to deliver dynamic assurance 
verification as part of the system; it will have to update and 
evolve as the system accrues time in the field.
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