
Software Self-Healing Mechanism to Mitigate Security Vulnerabilities Using
CI/CD Pipeline

Shumaila Hussain1*, Junaid Baber2, Muhammad Nadeem3, Shariqa Fakhar2

1Department of Applied Computer Science, Sardar Bahadur Khan Women’s University, Quetta, Pakistan; 2Department of Applied
Computer Science, University of Baluchistan, Quetta, Pakistan; 3Department of Applied Computer Science, Habib University,
Karachi, Pakistan

ABSTRACT
The software security vulnerabilities are reported frequently by CWE. These vulnerabilities result in huge financial

loss to technological industry due to patches development and redistribution to handle the arising vulnerabilities. In

this study we have proposed a platform or language independent software self-healing mechanism using CI/CD

pipeline and CWE guidelines to automatically mitigate the software security vulnerabilities. We have selected

improper input validation security vulnerability to implement the proposed mechanism. The improper input

validation is listed at 4th position among the top 25 most impactful vulnerabilities by CWE. The prototype developed

using the proposed software self-healing mechanism is capable of identifying the vulnerabilities and automatically

healing them. The proposed software self-healing mechanism is cost effective and efficient way to mitigate the

software security vulnerabilities.

Keywords: Improper input validation vulnerabilities; Software self-healing; Software security vulnerabilities; CI/CD

pipeline; CWE guidelines

INTRODUCTION
Technological advancement has increased the complexity of the
systems, making it difficult to tackle software vulnerabilities.
Software vulnerabilities are weaknesses, flaws, or unwanted
operations in the software system. It is very important to
mitigate these security vulnerabilities to make the software
reliable and efficient. The traditional method of mitigating
software vulnerability takes too much human effort, cost, time,
and expertise.

According to the research exploration about the financial impact
of software security vulnerabilities in US by the National
Institute of Standards and Technology (NIST) the US economy
loses about $60 billion USD every year for patches development
and redistribution to handle the arising software security
vulnerabilities [1,2].

In 2012, Knight capital, lost $400 million USD just because of a
security vulnerability in the system [3]. Similarly, the virus

attacks like love bug, code red wannacry etc. each had an impact
of 1 billion to 10 billion dollars [4,5]. The financial loss due to
software errors; made the buyers rethink the huge investments in
software [6]. The concept of patch development to heal
vulnerabilities is another most adopted concept. The research
found that 34% of the security patches developed triggered 52%
of new security problems and these patches are incomplete and
do not fully secure systems [7]. The research was conducted to
analyze the effect of patches on the maintainability of the
product using Better Code Hub and find it too harsh and not
robust enough [8]. Another research regarding the
maintainability of the patches says that the security patches can
cause a negative impact on the maintainability of the product
moreover, the developers need to pay more focus on
maintainability while developing the patches for improper input
validation vulnerability. He further added that the patch risk
assessment should be integrated with CI/CD pipeline to work
effectively [9].

Journal Information Technology &
Software Engineering Research Article

Correspondence to: Shumaila Hussain, Department of Applied Computer Science, Sardar Bahadur Khan Women’s University, Quetta, Pakistan,
Tel: 03457801456; E-mail: shumaila.hussain@sbkwu.edu.pk

Received: 23-Dec-2022, Manuscript No. JITSE-23-21151; Editor assigned: 26-Dec-2022, PreQC No. JITSE-23-21151 (PQ); Reviewed: 09-Jan-2023,
QC No. JITSE-23-21151; Revised: 20-Mar-2023, Manuscript No. JITSE-23-21151 (R); Published: 27-Mar-2023, DOI:
10.35248/2165-7866.23.13.332

Citation: Hussain S, Baber J, Nadeem M, Fakhar S (2023) Software Self-Healing Mechanism to Mitigate Security Vulnerabilities using CI/CD
Pipeline. J Inform Tech Softw Eng. 13:332.

Copyright: © 2023 Hussain S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Inform Tech Softw Eng, Vol.13 Iss.3 No:1000332 1

The concept of autonomic computing has brought up drastic
changes in the technological world. Autonomic systems are able
to reconfigure and optimize themselves in the unpredictable
situation; these systems can recover and heal security
vulnerabilities and can protect themselves from external attacks
[15].

Autonomic computing has brought the idea of self-healing
systems and these self-healing systems can successfully address
the problems of software security vulnerabilities; and can
increase software reliability [16,17].

The self-healing reduces human involvement in mitigating
vulnerabilities; they have lowered the vulnerability maintenance
costs and improved the existing vulnerabilities mitigation
techniques [18].

The self-healing has been induced in the computing systems in
many different ways. It has been implemented in the
architecture of the system. The concept comprises of changing
the architecture of the system so that the system attains self-
healing capabilities [19]. The software self-healing systems
adopting the architectural based models work with the concept
of vulnerability identification and reconfiguration of the system
by the external architectural based model.

The architectural based self-healing mechanism is performance
based and focus the performance of external architectural
components it is therefore difficult to identify the internal state
of the system. This mechanism does not take any information
from the internal system modules and it is difficult to develop
variety of self-healing strategies without internal information of
the system. It is not sufficient enough for the mitigation of the
security vulnerabilities to make changes in the targeted system
based on the information gathered by external architectural
model only.

The component based self-healing mainly focus the internal
components of the software system and make the components
capable of identifying, and resolving the vulnerabilities at the
component design stage. This technique divides the software
system in to two parts or layers the service layer and the self-
healing layer or component. The service layer is responsible to
provide the intended services while the self-healing layer is
supposed to monitor the activities of service layer identify the
vulnerability and reconfigure them.

The component based self-healing mechanism focuses on events
related to internal states and cannot determine internal status
problems due to lack of resource and thus cannot effectively
handle the security vulnerabilities.

Log-based self-healing approach enforces the self-healing by
maintaining the log files generated by all different kind of
software and auto correcting them. The vulnerability can only
be identified if it is logged it is therefore difficult to analyze the
vulnerability if the event is yet to be logged. The log mechanism
focuses on the vulnerability after the event it is difficult to
model constraints for monitoring, accessing, and healing based
on the internal view of system if the event is unlogged.
Moreover; just from the log we cannot identify the real impact of
the vulnerability on the software.

Hussain S, et al.

The concept of autonomous computing has brought the idea of
software self-healing in order to avoid human involvement in
mitigating software vulnerabilities.

The term software self-healing was first introduced by IBM in
2001, the concept involves a software system mechanism that is
capable of identifying that the system is not working correctly
and can adjust the fault automatically without human
intervention [10]. This concept helped to gain the user’s trust,
and reduced time, cost, human effort, and expertise.

There exist public repositories to be aware of the security
vulnerabilities and know the possible techniques to avoid such
vulnerabilities. The CWE is a public repository known as
Common Weakness and Enumeration (CWE); this includes
comprehensive literature about the most commonly arising
security vulnerabilities in software.

The CWE is owned by MITRE corporation it was established to
strengthen software security, and to help software organizations
and security expert’s cop with the vulnerabilities. Thus this can
be a great authentic source to mitigate common software
security vulnerabilities.

Along with adopting new mechanisms to mitigate security
vulnerabilities the process of software development SDLC
showed its vital role in building successful software. Considering
many important aspects of the software development processes
the researchers come up with many solutions grabbing the
attention towards continuous checks for security concerns in
each SDLC stage and thus improving the software development
process in order to maintain good quality software [11]. As time
passes it seemed that the software development techniques have
made the software development process very intricate and these
complexities have given rise to security loopholes in each stage
that are taken interest by hackers. It is therefore that a software
engineering technique with continuous checks came up known
as continuous integration.

In software engineering, Continuous Integration (CI) is the
practice of merging all developers' working copies to share
mainline several times a day [12]. In continuous integration
development environments, software engineers frequently
integrate new or changed code with the mainline code [13]. The
software vulnerabilities need to be checked in every stage of
SDLC in order to minimize the risk. Thus applying the process
of continuous integration and the concept of self-healing
together to mitigate security vulnerabilities can ensure reliable
software.

Motivation and related work

The most common and oldest approach to finding software
vulnerabilities is manual source code auditing. The technique
involves reading the source code and finding the vulnerabilities,
this is done by the team of security experts who work on the
vulnerable software patch, it involves human effort, cost, and
time and requires expertise [14]. The traditional software
vulnerability checking techniques cannot cope with new
software security vulnerabilities arising on daily basis obtained
from specific conditions and change dynamically at run-time.

J Inform Tech Softw Eng, Vol.13 Iss.3 No:1000332 2

the execution of the faulty paths a tool FastFix was developed
for this purpose.

The concept of using finite state automata has also been
implemented to ensure the system reliability. The
finite automata was used to identify the constraints of the faulty
event. The concept of system reboot to avoid the failure has also
been implemented to cop up with security vulnerabilities which
again provides temporary relief.

The micro-reboots were the software resigned on this
concept. Another way to enforce the self-healing capabilities
is agent based self-healing. In this technique the concept of
artificial intelligence is used and the software/hardware
agents are developed to automatically heal the security
vulnerabilities. This technique is implemented in various
ways to ensure the self-healing mechanism like it is used for
security and protection in monitoring using distributed
network environment, in the grid computing and using
cloud infrastructure. Recently genetic programming as a way
to automatically fix software faults has been introduced (Table
1).

Approach Description

Architecture

based

It works on the external architectural components of the system.

Component based This technique divides the software system in to two parts or layers the
service layer and the self-healing layer. The service layer is responsible to
provide intended services while the self-healing layer is responsible to
monitor the activities of service layer, identify the vulnerability and
reconfigure them.

Roll back The rollback is used when the non-deterministic failures occur in the
software system the system is then rolling back to the consistent state.

Smart execution The system tends to skip the execution of the faulty paths a tool Fastfix
was developed for this purpose.

Micro-reboot When the fault is identified the system tends to reboot the faulty
component.

Agent based In this technique the concept of artificial intelligence is used and the
software/hardware agents are developed to automatically detect and heal
the security vulnerability.

Self-detection of vulnerabilities It focuses on test-case generation and code analysis or run time
monitoring and check to make system reliable. Software self-checks the
security vulnerabilities using machine learning.

Finite state automata The finite state automata was used to identify the constraints of the
faulty event.

System reboot The concept of system reboot to avoid the failure has also been
implemented to cop up with security vulnerabilities.

Hussain S, et al.

The concept of roll back has also helped in making the system
capable of self-healing. The rollback is helpful when the non-
deterministic failures occur in the software system the system is
then rolling back to the consistent state. The roll back approach
is helpful in temporary basis as it does not fix and identify the
vulnerability but temporarily provides a relief from the failure in
the system.

The self-healing has not only been ensured by above mentioned
techniques but the researchers tried to come up with other
solutions to enable self-healing in the software. It has been
identified that paying attention towards self-detecting can bring
up the capability of self-healing in a software system. The self-
detection and self-healing traditionally focused on the test-case
generation and code analysis and skips the run time monitoring
and checks which is very important to make the system reliable.

Similarly; another technique to temporarily provide relief was
that after the occurrence of identification or unidentified
security vulnerability the system is enforced to re-execute the
failing part of the system under the controlled environment. Yet
another way to temporary relief from the vulnerabilities was to
handle the program execution smartly. The system tends to skip

J Inform Tech Softw Eng, Vol.13 Iss.3 No:1000332 3

Table 1: The comparative analysis of software self-healing mechanisms to mitigate software security vulnerabilities.

Genetic programming Genetic programming is applying natural genetic process to the specific
program. It uses heuristic or hill climbing search algorithm to search
optimal solution.

Monitoring illegal control flow It focused on the illegal transfer of control flow. Monitoring the
execution of the control flow and managing them helped removing the
security vulnerability.

Using rescue points In case of any fault the system is provided with rescue points to adopt the
path with rescue point for smooth execution.

The input validation is the assurance of accepting only required
format or authorized data from all input sources in any
computing application. The proper input validation prevents the
malformed data to persist in the database that triggers the
malfunctioning of the downstream components. The malicious
input can include unauthorized input as command, piece of
code and scripts to penetrate in the workflow of an application
and harm it. The input validation should necessarily be
performed on either synaptic or semantic level of any
application. The improper input validation is one of the major
cause of security vulnerabilities in any computing application.
The improper input validation can trigger the SQL injection
attack, cross-site scripting (XSS) attack, and buffer overflows,
XML external entity attacks (XXE), directory traversal attacks
and denial of services attacks. The CWE which is a project of
MITRE organization and aims to be a dictionary of software
weaknesses. It displays the weaknesses occurred in different
software and list the weaknesses according to their severity.

According to Common Weakness Enumeration (CWE) in 2021
the input validation is reported at 4th place in the list of top 25
most occurring and dangerous security vulnerabilities.

The MITRE is one of the organizations like, SANS institute and
OWASP that focuses on the awareness, importance and
improvement of the security vulnerabilities. These organizations
keep records and publish the security vulnerabilities occurring
on daily basis in different software applications. The projects of
MITRE Common Vulnerabilities and Exposure (CVE) which is
a vulnerability identification system that ‘aims to provide a
unique CVE identification to publicly known security
vulnerabilities and links the vulnerability databases and other
capabilities while the CWE not only publish and provides a
repository of the vulnerabilities but helps the programmers by
providing the mitigation techniques of the security vulnerability
as well. These repositories help the researchers and programmers
to work on the vulnerabilities and developed the tools such as
static code analysis dynamic tainting, combination of dynamic
tainting and static analysis.

The Table 2 below shows the approaches used to detect
and mitigate the security vulnerabilities raised due to improper
input validation from 2010 to 2022 (Table 2).

Vulnerability Approach

Cross site scripting attacks Detection of cross site scripting attack using modified CNN model.

The client side execution-flow based method using finite-state automata
to detect cross-site scripting attacks.

Automated server-side XSS attacks detection using boundary injection.

TT-XSS: A novel taint tracking based dynamic detection framework for
DOM cross-site scripting.

Detecting blind cross-site scripting attacks using SVM.

Reducing attack surface corresponding to type 1 cross-site scripting
attacks using secure development life cycle practices.

DeepXSS: Cross site scripting detection based on deep learning LSTM
recurrent neural network.

Resolving cross-site scripting attacks through genetic algorithm and
reinforcement learning.

Hussain S, et al.

J Inform Tech Softw Eng, Vol.13 Iss.3 No:1000332 4

Table 2: Approaches used to detect and mitigate the improper input validation security vulnerabilities from 2010 to 2022.

Cross-site scripting attack detection using machine learning with hybrid
features.

Detection of cross-site scripting attacks using dynamic analysis and fuzzy
inference system.

Preventing XSS attacks using application firewall.

Preventing client side XSS by tracking the flow of information in
browser.

Preventing XSS attacks using preventive measures along with tainted
information flow graph to audit the XSS attacks.

Repairing XSS using unit testing.

Noxes: Protects the information leakage to repair cross site scripting
attack on client side.

Buffer overflow attacks Automatic repair method for D2D communication routing buffer
overflow vulnerability in cellular network using buffer overflow repair
algorithm based on homomorphic analysis of node residual energy.

Detecting return to libc buffer overflow attacks using network
intrusion detection systems.

Preventing buffer overflow attacks by memory randomization.

Exploiting stack based buffer overflow using data execution
prevention and address space layout randomization.

Using string library function for detecting integer-overflow to
buffer-overflow vulnerability.

Automatic prevention of buffer overflow vulnerability using candidate
code generation.

Buffer overflow attack with multiple fault injection and a proven
countermeasure using Address Space Layout Randomization (ASLR),
Stack Guard (SG), Data Execution Prevention (DEP), Exec Shield
(ES) and Input Size Limitation (ISL)

Rupair: A data flow analysis algorithm for RUST code.

Performed static buffer overflow detection and suggested for automatic
detection.

Proposed a compiler to automatically fix the integer overflow to buffer
over flow vulnerability.

Static buffer overflow detection and repair using bovlnspector tool.

Automatically generating patch in C language using satisfiability modulo
theories SMT to fix buffer overflow.

SQL injection attacks Detection of SQL injection attack using decision tree.

SQLrand: Preventing SQL injection attacks using instruction set
randomization.

Hussain S, et al.

J Inform Tech Softw Eng, Vol.13 Iss.3 No:1000316 5

An approach for SQL injection detection based on behavior and
response analysis.

A heuristic based approach for detecting SQL injection vulnerabilities in
web applications.

SQL injection attacks detection and prevention based on neuro fuzzy
technique

Prevention of SQL injection attacks to login page of a website
application using prepared statement technique

An algorithm for detecting SQL injection vulnerability using black-box
testing.

DIAVA: A traffic-based framework for detection of SQL injection attacks
and vulnerability analysis of leaked data.

A hybrid method consists of augmented database tables with symbols
then an algorithm for queries and another algorithm designed for string
matching is used for detection and prevention of SQL injection attacks.

A second-order SQL injection detection method using instruction set
randomization.

Train the dataset, cluster them; similar clusters are matched and
suggestions are generated to fix SQL injection attacks.

Tool is developed to detect the SQL injection attacks and displays
suggestions to fix it.

Replacing the vulnerable API with secure API using java to fix SQL
injection attack.

Fixing the SQL injection vulnerable web application firewall using
machine learning with multi-objective genetic algorithm.

An algorithm to replace the SQL statements with prepared statements to
fix SQL injection vulnerability.

MATERIALS AND METHODS
We have analyzed the traditional techniques of mitigating the
software security vulnerabilities and identified the financial loss
and difficulties in patches integration. Moreover; the existing
techniques to mitigate the security vulnerabilities are also
discussed. The research design of the study is shown in the
Figure 1 below.

Figure 1: Research design.

The diagram of the proposed mechanism is given below (Figure
2).

Figure 2: Proposed mechanism for software self-healing.

The proposed mechanism uses the CI/CD pipeline and CWE
recommendations to mitigate the identified software security
vulnerability.

The CI/CD pipeline is briefly explained in the diagram below
(Figure 3).

Hussain S, et al.

The vulnerable source code is selected and analyzed for security
vulnerabilities a code transformation module transforms the
codes and automatically heal the raised software security
vulnerability.

J Inform Tech Softw Eng, Vol.13 Iss.3 No:1000332 6

Figure 3: Continuous integration and continuous deployment
pipeline.

The source stage is where commit in the source code triggers a
notification to the CI/CD tool, which runs the corresponding
pipeline. The application is then built to deployable instance or
package. The test stage is responsible to perform unit test,
integration test and smoke test on code. The code is finally
deployed to the production.

Once the product reaches the deployment stage it is exposed to
the CWE repository. The CWE is a project of CVE by MITRE.
It is data dictionary of computing system flaws. It provides a
standard measurement for software security tools. The code
transition module is responsible to automatically heal the
identified security vulnerability.

We have developed a prototype implementing the proposed
software self-healing mechanism. The improper input
validations security vulnerability is selected to be self-healed by
proposed mechanism. The improper input validation
vulnerability is at the fourth place among the top 25 most
impactful security vulnerabilities in the CWE list (Figure 4).

Figure 4: Position of improper input validation vulnerability
among top 25 security vulnerabilities on Common Weakness
Enumeration (CWE).

RESULTS AND DISCUSSION
We have developed a prototype implementing the proposed
mechanism to prove the self-healing concept. The open source
software Apache Jena Fuseli is listed for improper input
validation vulnerability by CVE. The Common Vulnerabilities
and Exposures (CVE) is a project of MITRE corporations. It is a
list of publicly disclosed computer security flaws. Each security
flaw that’s listed in CVE is assigned a CVE ID number to
uniquely identify each security flaw (Figure 5).

Figure 5: Improper input validation issue in Apache Jena
Fuseki listed by Common Vulnerabilities and Exposures
(CVE).

The Apache Jena Fuseki 2.0.0 to 4.0.0 includes the improper
input validation vulnerability in their source code. The Apache
Jena Fuseki 2.0.0 is selected as vulnerable source code to induce
the self-healing mechanism. Apache Jena Fuseki is a SPARQL
Server. It can be run as operating system service, as a java web
application (WAR file), and as a standalone server.

In order to analyze the improper input validation vulnerability
in Apache Jena Fusiki the static code analysis tool is used. The
static code analysis tools or Static Application Security Testing
(SAST). It is the process of analyzing software security
vulnerabilities in selected software.

The visual code grepper is selected for static code analysis as it is
a powerful tool that can perform complex security vulnerabilities
check on code with thousands of code files. The Apache Jena
Fusiki is large software with thousands lines of code. The
Apache Jena Fusiki is analyzed for reported input validation
vulnerability using static analysis tool called Visual Code
Grepper (VCG). The Visual Code Grepper (VCG) identified
multiple improper input validation vulnerabilities in the Jena
Fusiki (Figure 6).

Hussain S, et al.

The vulnerable source code including improper input validation
vulnerability is identified using CVE. The CVE stands for
common vulnerabilities and exposures it is project of MITRE
that classifies the security vulnerabilities. The prototypes self-
heal the improper input validation vulnerabilities from the
source code using the proposed mechanism.

J Inform Tech Softw Eng, Vol.13 Iss.3 No:1000332 7

Figure 6: Improper input validation issue in Apache Jena Fuseki
listed by visual code grepper.

The proposed software self-healing mechanism is used to
mitigate the selected security vulnerability. We have developed a
prototype using the proposed self-healing mechanism. The
prototype is capable of identifying and automatically mitigating
the security vulnerabilities using CI/CD pipeline and CWE
guidelines (Figures 7 and 8).

Figure 7: Interface of developed prototype using proposed self-
healing mechanism.

Figure 8: Prototype opens the source code of Apache Jena
Fuseki.

The prototype is provided with the source code of Apache Jena
Fuseki to analyze the security vulnerabilities (Figures 9 and 10).

Figure 9: Prototype analyses the source code of Apache
Jena Fuseki.

Figure 10: Prototype identifies improper input validation
vulnerabilities from the source code of Apache Jena Fuseki.

We have selected the improper input validation security
vulnerability identified in Apache Jena Fuseki 2.0.0 (Figure 11).

Figure 11: Prototype self-heals the improper input validation
vulnerabilities from the identified source code of Apache Jena
Fuseki.

The prototype analyzes the type and cause of improper input
validation vulnerability and matches with the guidelines
provided by CWE repository and automatically heal the code
according to the CWE guidelines for the vulnerability (Figure
12).

Hussain S, et al.

J Inform Tech Softw Eng, Vol.13 Iss.3 No:1000332 8

Figure 12: The source code of Apache Jena Fuseki is self-healed.

REFERENCES
1. Planning S. The economic impacts of inadequate

infrastructure for software testing. National Institute of Standards
and Technology, 2002.

2. Zhivich M, Cunningham RK. The real cost of software errors. IEEE
Security and Privacy. 2009;7(2):87-90.

3. Strasburg J, Bunge J. Loss swamps trading firm. Wall Str J Mag.
2012;1-5.

4. Geppert L. Lost radio contact leaves pilots on their own. IEEE
spectrum. 2004;41(11):16-17.

5. Berr J. Wannacry-ransomware-attacks-wannacry-virus-losses. 2017.

6. Chen Y, Chen J, Gao Y, Chen D, Tang Y. Research on
software failure analysis and quality management model. IEEE
Explore,16-20 July, Lisbon, Portugal, 2008;94-99.

7. Li F, Paxson V. A large-scale empirical study of security
patches. In proceedings of the 2017 ACM SIGSAC conference on
computer and communications security, Berkeley, CA, USA, 2017.

8. Olivari M. Maintainable production, a model of developer
productivity based on source code contributions. Maintainable
production. 2017;1-106.

9. Reis S, Abreu R, Cruz L. Fixing vulnerabilities potentially hinders
maintainability. Empir Softw Eng. 2021;26:1-27.

10. Batarseh FA, Gonzalez AJ. Predicting failures in agile software
development through data analytics. Softw Qual J. 2018;26:49-66.

11. Fowler M, Foemmel M. Continuous integration. 2006.

12. Piantadosi V, Scalabrino S, Oliveto R. Fixing of security
vulnerabilities in open source projects: A case study of Apache http
server and Apache tomcat. IEEE Explore, 22-27 April, Xi'an, China,
2019;68-78.

13. Kephart JO, Chess DM. The vision of autonomic computing.
Computer. 2003;36(1):41-50.

14. Arcuri A, Yao X. A novel co-evolutionary approach to automatic
software bug fixing. IEEE Explore, Hong Kong, China,
2008;162-168.

15. Gorla A, Pezze M, Wuttke J, Mariani L, Pastore F. Achieving cost-
effective software reliability through self-healing. Comput Inform.
2010;29(1):93-115.

16. Schneider C, Barker A, Dobson S. A survey of self‐healing systems
frameworks. Softw Pract Exp. 2015;45(10):1375-1398.

17. Dashofy EM, van der Hoek A, Taylor RN. Towards
architecture based self-healing systems. In proceedings of the
first workshop on Self-healing systems, New York, NY, United
States, 2002;21-26.

18. Garlan D, Schmerl B. Model based adaptation for self-healing
systems. In proceedings of the first workshop on self-healing
systems, Pittsburgh, PA, 2002;27-32.

19. Garlan D, Cheng SW, Huang AC, Schmerl B, Steenkiste P.
Rainbow: Architecture based self-adaptation with
reusable infrastructure. Computer. 2004;37(10):46-54.

Hussain S, et al.

In order to validate the mitigation of input validation security
vulnerabilities from Apache Jena Fuseki the software is tested
again for the vulnerability and the results shows that the
prototype developed using proposed software self-healing
mechanism has automatically mitigated the security
vulnerabilities. The proposed software self-healing mechanism
can be implemented to self-heal any software security
vulnerability.

CONCLUSION
In this study we have proposed a software self-healing
mechanism using CI/CD pipeline and CWE guidelines to
automatically mitigate the vulnerabilities. The CWE repository
is used to identify the security vulnerabilities in software and
provides a baseline to mitigate and prevent the identified
vulnerabilities. We have selected input validation vulnerability
placed at the 4th position in the list of top 25 most impactful
software security vulnerabilities on CWE. The open source
software Apache Jena Fuseki 2.0.0 is selected as it is listed as
vulnerable to input validation.

The prototype is developed using the proposed software self-
healing mechanism to prove the concept. The prototype is
developed using CI/CD pipeline using security vulnerability
prevention and mitigation guidelines from CWE repository.
The proposed mechanism is capable of self-healing any security
vulnerability. Any software developed using proposed
mechanism is capable of self-healing any software security
vulnerability.

Technological advancement has raised the risk of security
vulnerabilities. The latest technologies are more complex and
are associated with new security risks. The software security
vulnerabilities are arising on daily basis and it is difficult to
address all security vulnerabilities at once. We have selected
improper input validation vulnerability any other security
vulnerability can be selected in future to be mitigated.

J Inform Tech Softw Eng, Vol.13 Iss.3 No:1000332 (MRPFT) 9

https://ieeexplore.ieee.org/abstract/document/4812166
https://ieeexplore.ieee.org/abstract/document/1353787
https://ieeexplore.ieee.org/abstract/document/8431958
https://ieeexplore.ieee.org/abstract/document/8431958
https://dl.acm.org/doi/abs/10.1145/3133956.3134072
https://dl.acm.org/doi/abs/10.1145/3133956.3134072
https://link.springer.com/article/10.1007/s10664-021-10019-z
https://link.springer.com/article/10.1007/s10664-021-10019-z
https://link.springer.com/article/10.1007/s11219-015-9285-3
https://link.springer.com/article/10.1007/s11219-015-9285-3
https://ieeexplore.ieee.org/abstract/document/8730158
https://ieeexplore.ieee.org/abstract/document/8730158
https://ieeexplore.ieee.org/abstract/document/8730158
https://ieeexplore.ieee.org/abstract/document/1160055
https://ieeexplore.ieee.org/abstract/document/4630793
https://ieeexplore.ieee.org/abstract/document/4630793
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2250
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2250
https://dl.acm.org/doi/abs/10.1145/582128.582133
https://dl.acm.org/doi/abs/10.1145/582128.582133
https://dl.acm.org/doi/abs/10.1145/582128.582134
https://dl.acm.org/doi/abs/10.1145/582128.582134
https://ieeexplore.ieee.org/abstract/document/1350726
https://ieeexplore.ieee.org/abstract/document/1350726

	Contents
	Software Self-Healing Mechanism to Mitigate Security Vulnerabilities using CI/CD Pipeline
	ABSTRACT
	INTRODUCTION
	Motivation and related work

	MATERIALS AND METHODS
	RESULTS AND DISCUSSION
	CONCLUSION AND FUTURE WORK
	REFERENCES

