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Multicellular organisms are strictly dependent on the ability of 
individual cells to communicate with each other and cooperate properly 
to coordinate functions during embryogenesis and throughout the 
entire life span. A major mechanism of cellular communication is 
mediated by cell surface receptors that deliver signals across the plasma 
membrane following their engagement with cognate ligands. Since all 
cells express a large variety of surface receptors they can respond to 
many different signals provided by peptide hormones, growth factors, 
neurotransmitters and antigens, as well as surface molecules on 
neighboring cells or components of the extracellular matrix. 

Studies over the past two decades yielded a multitude of evidence 
to substantiate a concept in which both constitutive and transient 
protein-protein interactions, mediated by a relatively small number 
of evolutionary conserved protein modules, provide the underlying 
framework through which signaling pathways operate. Spatially and 
temporally regulated protein-protein interactions that occur at the 
ligand-occupied receptor site promote the assembly of multi-molecular 
complexes where posttranslational modifications regulate molecular 
interactions and protein functions.

One of the most extensively studied receptors is the T cell antigen-
specific receptor (TCR). T lymphocytes, which are the major players in 
cell-mediated immunity, are non-active under steady state conditions 
but undergo activation following the simultaneous engagement of 
their TCR [1] and co-stimulatory receptors [2-4]. The first signal is 
provided by TCR binding to a specific peptide antigen presented on 
major histocompatibility complex (MHC) molecules on the surface 
of an antigen-presenting cell (APC). This signal activates an array of 
enzymes essential for signal delivery across the cell membrane [5-8]. A 
second signal, obtained through a co-stimulatory receptor, is antigen 
nonspecific. It is provided by the interaction of a T cell co-stimulatory 
molecule, such as CD28, with one of its corresponding ligands on 
the surface of APC, the CD80 and CD86 proteins (also termed B7.1 
and B7.2, respectively). CD28 is the only co-stimulatory receptor 
expressed constitutively by naïve T cells, while receptors such as OX40 
and inducible T-cell co-stimulator (ICOS; CD278) are transiently 
expressed following cell activation and are largely dependent upon 
the expression of CD28. Both signals are required for production of 
an effective immune response in the absence of co-stimulation; TCR 
signaling alone results in non-responsiveness or anergy. Furthermore, 
the process of T cell activation can be inhibited by the additional 
engagement of co-inhibitory receptors, such as programmed cell death 
1 (PD-1; CD279) with a PD-1 ligand 1 (PD-L1; CD274, also known as 
B7 homolog 1 (B7-H1)) on the surface of APC.

The signaling pathways downstream of the costimulatory 
molecules usually engage the phosphatidylinositol-3-kinase (PI3K) 
pathway generating phosphatidylinositol 3,4,5-trisphosphate (PIP3) at 
the plasma membrane and recruiting PH domain-containing signaling 
molecules such as, phosphatidyl-inositol-dependent kinase 1 (PDK1). 
These are essential for the activation of protein kinase C (PKC) theta 
(PKCθ) [9], which cooperates with the protein Ser/Thr phosphatase, 
calcineurin [6] in transduction of signals leading, among other things, 
to the activation of enzymes and transcription factors, including 
c-Jun N-terminal kinase (JNK) and Nuclear factor of activated T-cells

(NFAT), and the synthesis and secretion of the interleukin-2 (IL-2) 
growth factor[10].

This Special Issue on Signal Transduction Mechanisms in T 
lymphocytes compile twelve manuscripts that review the current 
knowledge on some of the most important effector molecules and 
cellular mechanisms that govern and regulate T cell behavior.

In a manuscript by Makoto Yamagishi and Toshiki Watanabe, the 
authors discuss many of the signaling pathways that are involved in the 
regulation of T cell activation and differentiation and the implications 
of deregulated events on T cell disorders and T cell transformation 
leading to leukemia [11]. The authors describe crosstalk between 
signaling pathways that dictate developmental cues governing T cell 
differentiation and function under both normal physiological and 
pathological conditions.

Balachandra K. Gorentla and Xiao-Ping Zhong review the current 
information relevant to both proximal and distal TCR-linked signaling 
pathways and describe the role of adaptor proteins and other effector 
molecules in assembling the proximal signalosome required for signal 
transduction from the activated TCR [12]. They also discuss the role of 
the ζ-associated protein of 70kDa (Zap70) [5,13,14] and key adaptor 
proteins which serve as substrates for Zap70, including the linker for 
the activation of T cells (LAT), and the SH2- containing leukocyte 
phosphoprotein of 76 kDa (SLP-76) during the early activation phase 
of T cells [15,16]. T cell activation also promote the interaction of 
tyrosine-phosphorylated Zap70 with adaptor proteins that are not 
direct substrates for Zap70, such as members of the Crk adaptor protein 
family [17-19], which play a role in cytoskeletal reorganization and the 
assembly of the immunological synapse of the activated T cell [20].

A critical enzyme that operates downstream of the activated TCR is 
the PKCθ isoform, a member of the PKC family of Ser/Thr kinases that 
is expressed in all T cell subsets [9,21,22]. Productive engagement of T 
cells by APCs results in recruitment of PKCθ to the T cell-APC contact 
area where PKCθ interacts with and phosphorylates effector molecules 
that activate a chain of events, leading to signal transduction into the 
cell’s nucleus [23,24].

The role of PKCθ in the regulation of TCR proximal signaling 
and its potential usage as a drug target for T cell-mediated diseases is 
discussed by Noah Isakov [25]. PKCθ was discovered two decades ago 
[26] and found to be essential for mature T cell responses [27]. TCR/
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CD28 engagement induces the translocation of PKCθ to the center 
of the immunological synapse where it undergoes posttranslational 
modifications and becomes fully active [28,29]. It then couples the 
activated TCR and the CD28 costimulatory receptor to downstream 
signaling pathways [30] leading to the activation of nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB), AP-1 and 
NF-AT transcription factors, which regulate T cell survival, activation 
and differentiation [31-35]. PKCθ participates in cellular mechanisms 
leading to excessive inflammatory responses, autoimmunity, and 
graft vs. host (GvH) disease, but is dispensable for beneficial immune 
responses against viruses and during graft vs. leukemia responses [36-
38]. Based on the above observation it has been suggested that PKCθ 
may serve as a drug target for catalytic and allosteric inhibitors in 
selected T cell-mediated diseases.

CD28 is the most important co-stimulatory molecule in T cells [39], 
and together with ICOS, the two represent a group of co-stimulatory 
surface receptors that are expressed in constitutive or transient manner 
[40]. A second group of receptors with an opposing effect on T cells 
can downregulate or terminate responses of activated T cells. They are 
members of a group of co-inhibitory receptors that includes molecules 
such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4; CD152) 
[41] and PD-1 [42,43].

Recent developments in the field of co-inhibitory receptors are
summarized by David Escors and colleagues who emphasize the effects 
of PD1 interaction with its ligand, PD-L1 and the impact of activation 
of PD1 on the regulation of T cell activation and differentiation [44]. 
In addition, they discuss future directions of manipulation of co-
inhibitory receptors in tumor immunotherapy [45,46].

A complementary review on co-inhibitory receptors, by Bin Wei 
and colleagues, focuses on the PD-1 and CTLA-4 mediated inhibitory 
signals that potentially lead to T cell exhaustion during chronic viral 
infections [47].

Recent studies indicate that chronic infections are associated with 
increased expression of the PD-1 and CTLA-4 co-inhibitory molecules, 
which play similar but non-redundant roles in T cell exhaustion [48-
51]. Engagement of these receptors by their ligands inhibit T cell 
proliferation and cytokine secretion and attenuate immune responses, 
while blockade of PD-1 and CTLA-4 restores effector functions of 
exhausted T cells. The authors discuss the role of effector molecules that 
are being recruited to the activated receptors and contribute to signal 
transduction leading to inhibition of protein kinase B (PKB; Akt). They 
further discuss PD-1 and CTLA-4 as potential drug targets during 
chronic viral infections that may enhance antiviral T cell activity.

The current understanding of the biological function and 
mechanism of action of co-inhibitory receptors during the early stage 
of T cell activation is further discussed by Jean G. Sathish and colleagues 
[52]. This comprehensive review relates to the role and the mechanism 
of action of many known co-inhibitory receptors, including CTLA-4, 
PD-1, B- and T-lymphocyte attenuator (BTLA), lymphocyte-activation 
gene 3 (LAG-3), leukocyte-associated immunoglobulin-like receptor 
(LAIR-1), T cell immunoglobulin mucin-3 (TIM-3), T cell Ig and ITIM 
domain (TIGIT) and sialylated glycoconjugates (siglecs) proteins in 
activated T cells [53,54]. The effects of the co-inhibitory receptors are 
mediated by extracellular mechanisms, such as ectodomain competition 
with counter receptors, or intracellular mechanisms mediated by 
protein phosphatases that counteract positive signals mediated by 
protein kinases. It is believed that co-inhibitory receptors can fine-tune 
the quality and strength of T cell-mediated immune response by acting 

as a checkpoint and threshold-setters, or modulators of activation and 
feedback mechanisms [55-57].

The activation process of T cells involves dramatic morphological 
changes leading to formation of the immunological synapse at 
the contact site with APC, secretion of specific cytokines and lytic 
granules in a polarized manner, and extravasation across vascular 
endothelium during inflammation. The morphological changes that 
occur in activated T cells are summarized by Mira Barda-Saad and 
colleagues [58] who review the current knowledge on the role of actin 
and actin regulatory proteins, including Wiskott-Aldrich syndrome 
protein (WASp) and WASp family verprolin-homologous protein 
(WAVE) during cellular remodeling that drive the effector functions 
[59]. The authors emphasize the role of actin regulating proteins 
in reorganization of the cell cytoskeleton. In particular, they focus 
on the structure and function of the WASp and WAVE [60,61] and 
address pathological aspects related to defects in these proteins and the 
relevant therapeutic approaches, including gene therapy and stem cell 
transplantation [62,63].

In an additional manuscript, Stefanie Kliche and colleagues 
[64] review recent findings relevant to adhesion and degranulation-
promoting adapter protein (ADAP), Src kinase associated protein of
55 kDa (SKAP55), and SKAP-homologue (SKAP-HOM) cytosolic
adapter proteins, which regulate inside-out/outside-in signaling of
integrins [65,66]. Some of these proteins also play an essential role in
the assembly of PKCθ/CBM/TRAF6/ADAP/TAK1 signalosomes that
regulate JNK activity and JNK-dependent activation of NF-κB and
Cdk2 [67]. The authors also examine and compare structure-function
relationships of these proteins and discuss their role in T-cell adhesion,
migration and proliferation.

Yashaswini Kannan and Mark S. Wilson further discuss the role of 
the tyrosine-protein kinase, Tec, and mitogen-activated protein kinase 
(MAPK) signaling pathways in T helper (TH) cell development, TH2 
differentiation and allergic asthma [68]. They summarize the current 
knowledge on the role of Tec and MAPK in T cell development and 
differentiation with an emphasis on TH2 cells [69-72]. In addition, they 
concentrate on the role of TH2 cells in allergy development and provide 
a brief update on potential kinase inhibitors that were tested both in 
vitro and in vivo [73-75].

The review manuscript by Raffi Gugasyan and colleagues focuses 
on the role of NF-κB in T-lymphocyte development and function [76]. 
NF-κB is a ubiquitous transcription factor that regulates expression of 
a wide range of genes [77]. The review concentrates on the role of NF-
κB in the process of T cell maturation in the thymus and on T-helper 
cell polarization to functionally distinct peripheral T cell subsets 
[78,79] and discusses crosstalk mechanisms between NF-κB and other 
signaling pathways in T cells [80,81].

Dietmar Zehn and colleagues [82] summarize the current 
understanding and the functional importance of low affinity T cells 
during infection, autoimmunity and cancer diseases, and discuss the 
mechanism by which T cell function is influenced by TCR affinity and 
TCR signal strength [83]. They also discuss the impact of inhibitory 
and activating receptors on the function of T cells possessing TCR with 
different affinity to antigens.

The last review in this Special Issue is devoted to signaling 
molecules and effector mechanisms that regulate metabolic processes 
in T lymphocytes undergoing cell activation [84], with emphasis 
on enzymes, such as phosphoinositide-3-kinase (PI3K), AKT, and 
adenosine-monophosphate- activated protein kinase (AMPK) [85-87]. 
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Jonathan A. Lindquist and colleagues, discuss the metabolic profiles of 
activated T cells that characterize their differentiation into distinct T 
cell subsets and describe the mechanisms by which key molecules, such 
as AKT and AMPK, accomplish their tasks.

Collectively, the reviews included in this Special Issue demonstrate 
the complexity of signaling networks involved in the regulation of 
T cell behavior. They discuss the role of distinct surface receptors in 
signal delivery across the plasma membrane and the complexity of 
the crosstalk between various signaling pathways. Identification of 
all players in these ‘arena’ and characterization of their mechanism of 
action will facilitate the future design of new drugs and implementation 
of new therapeutic protocols for application in a range of diseases. 
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