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Abstract

Viral load reduction followed by immunomodulation is an emerging approach to improve the treatment outcomes
in patients with Chronic Hepatitis B (CHB). Persistent functional defects in Dendritic Cells (DC) have been observed
in CHB patients, even with effective antiviral therapy. We investigated the effects of Tenofovir plus Peg-IFN
Sequential Therapy (SQT) on functional restoration of innate and adaptive immunity in CHB patients. HBeAg+ve
CHB patients were randomized to receive 48weeks of either tenofovir monotherapy (TM; Gr.1, n=30) or tenofovir
with addition of PEG interferon from week 12 to 36 followed by tenofovir sequential therapy (SQT; Gr. 2, n=28) for
48 weeks. Biochemical parameters improved significantly with treatment at week 24 in both groups, but HBeAg
seroconversion at week 48 occurred more frequently after SQT (21%) than TM (13%). At week 24, the expression
and function of TLR7 and TLR9 in DCs were significantly increased in SQT compared to TM (p<0.05). Phagocytic
activity of DCs, production of IFN-α and TNF-α by mDCs and pDCs and the expression of specific miRNAs for DC
proliferation and maturation like miR155 and miR221, were higher in the SQT (p<0.05). After 24 weeks, SQT
restored significantly more circulating CD8Tcells (p=0.02), CD8+CD127+ Tcells (p=0.03) and reduced the PD-1
expression on CD8 T-cells (p=0.04) vs. TM. Our results show that in a short period of 24 weeks, SQT significantly
improves functionality of DCs. Upregulation of TLR7 and TLR9 and miR155 in DCs by PEG-IFN-α is a novel
mechanism that may be quite significant in mounting an effective antiviral response. Influence of longer duration of
SQT and immunomodulation needs to be studied.
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Introduction
Hepatitis B Virus (HBV) infection is one of the most prevalent

infectious diseases affecting more than 350 million subjects worldwide.
About 5% of acutely infected HBV patients develop chronic infection
due to ineffective host immune response [1,2].

Immunological responses to chronic hepatitis B (CHB) are
characterized by an expansion of CD4 and CD8 T cells with minimal
HBV specific response [3]. Enhancement of dendritic cell (DC)
function is believed to play a vital role in priming CD4 and CD8 T
cells to mount an effective antiviral response against HBV [4]. DCs
recognise HBV antigens or viral DNA through Toll Like Receptors
(TLRs) and activate NF-κB, p38 MAPK signalling pathway resulting in
secretion of type-I Interferon and pro-inflammatory cytokines as part
of antiviral adaptive immune response [5]. Functional defects in DCs
result in CD4 and CD8 T cell hypo-responsiveness in CHB patients

[6,7]. The DC dysfunction is probably a consequence of HBV viremia
as reduction in HBV viral load results in an improved immunologic
phenotype [7].

Antiviral therapy with tenofovir results in partial reconstitution of
effective T cell responses due to a reduction in exhaustive cells [8].
Interferon based immuno-modulatory therapy induces innate
immunity and yield strong protective immunity in CHB patients
[9,10]. IFN plays an immunoregulatory role in induction, activation
and maturation of macrophages and DCs, resulting in increased
cytotoxic T-cell activity for lysis of infected hepatocytes. IFN
monotherapy in HBeAg-+ve CHB patients can achieve HBeAg
seroconversion in about 20-40% of patients and loss of HBsAg in
approximately 8% of patients [11]. While a lot of work has been done
on the mechanism of immunomodulation by intreferon therapy in
CHB, its role in modulating DCs to activate effector CD8+ T cells
needs more attention [12].

Since oral antiviral agents and immunomodulators have different
mechanisms of action, though overlapping to some extent, it is logical
to evaluate a combination of them for better treatment outcomes [13].
However, the results using combination of interferon with antiviral
agents have shown mixed results [13-15]. There have been very few
studies which have utilized the potential of immune restortaion after
viral load reduction, with modulation by interferon therapy [14,15].
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Figure 1: Improved phenotype and functionality of mDCs and
pDCs in Peripheral blood among patients receiving monotherapy
and sequential therapy. (A-B) No significant increase in frequencies
of mDCs and pDCs was observed after 24weeks of both therapies.
(C-D) Expression of co-stimulatory molecules was analyzed after
24week of each therapy. No significant difference was observed
with both therapies. (E-F) In between two therapies, sequential
therapy increased the HLA-DR expression on mDCs and pDCs and
CD83 expression on pDCs. (G-H) With TLRs agonist stimulations,
in sequential therapy mDCs and pDCs showed significantly
increased expression of TLRs. Results were expressed as the mean
and error bars represent SD.

Both the studies have shown that sequential therapy has improved
HBeAg serconversion rate as compared to monotherapy. However, in

these studies, lamivudine was used as an antiviral agent. A comparison
with potent agents such as tenofovir has not been investigated.

The precise immunological mechanisms underlying the enhanced
response with sequential therapy have not been studied. It is
hypothesized that restoring the function of DCs may be the major
mechanism for immune restoration. Therefore, we undertook to
compare the immunological responses during tenofovir monotherapy
and sequential therapy with tenofovir followed by peg interferon
therapy in CHB patients.

Materials and Methods

Patients
Treatment naive CHB patients, HBeAg positive and with raised

ALT (> 48 IU/ml) for at least 6 months were screened for inclusion in
the trial at the outpatient clinic of the Institute of Liver and Biliary
Sciences (ILBS). Patients with ALT levels of >10 times ULN and those
with clinical or radiological evidence of cirrhosis of the liver, co-
infection with HCV, HDV or HIV, haemoglobin less than 10 g/dL, low
platelet (<100,000/mm3) or leukocyte counts (<3,000/mm3),
contraindications to interferon therapy, pregnant or nursing mothers
were excluded from the study. Subjects with a prothrombin time
prolonged by more than 3 seconds, a serum albumin level <2.5 g/dL,
or evidence of liver disease because of other etiology; serum creatinine
>1.2 times ULN, history of organ transplantation; serious concurrent
medical illnesses (like malignancy, severe cardiopulmonary disease,
uncontrolled diabetes mellitus, alcoholism) and inability to give
informed written consent were excluded from the study. The clinical
trial was approved by the institutional Ethics committee and all
patients signed informed consent.

Patients with HBV DNA levels >2×104 IU/ml underwent a liver
biopsy to confirm the diagnosis of chronic hepatitis B. Patients
fulfilling the selection criteria were randomized in an open label
manner into either of the two groups:

Group 1 (n=30): Tenofovir Monotherapy (TM): Patients received
tenofovir alone 300 mg daily for 48 weeks.

Group 2 (n= 28): Tenofovir plus Peg-IFN in a sequential manner,
the Sequential therapy (SQT):

In the sequential therapy, the patients received Tenofovir alone for
12 weeks and from week 13th, they received Peg-IFN-α 2b, 1.5 mcg/kg
once a week subcutaneously, along with tenofovir till week 36 and then
from week 37th till week 48, they received Tenofovir alone
(Supplementary Figure 1).

Laboratory evaluation
HBV DNA levels, HBsAg, HBeAg and antibody to HBeAg (anti-

HBe) were determined at baseline and at week 4, 12, 24, 36 and 48
after initiating treatment.

End-points
The primary end-point of the study was absence of detectable HBV

DNA and secondary end-points were loss of HBeAg, appearance of
anti-HBe (HBeAg seroconversion) and normalization of ALT (≤40
IU/L) at week 48.
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Quantitation of HBV DNA
HBV DNA was extracted from 100 μl of plasma and quantification

of HBV DNA was done using COBAS® AMPLICOR HBV MONITOR
kit (Roche diagnostic, USA) as described previously [7].

Analysis of mDCs and pDCs by flow cytometry
The study of dendritic cells at different stages of antiviral therapy in

the two groups was one of the main objectives. The mDCs and pDCs
were isolated and characterized in the peripheral blood by using anti-
CD11c-PeCY7, anti-DCSIGN-PE (BD Pharmingen, CA, USA) and
anti-BDCA2-FITC, anti- CD123-PE, anti-CD83-PE, anti-HLA-DR-
APC ( eBiosciences, CA, USA). CD3 and CD8 T cells and expression
of PD1 on T cells was analyzed using anti-CD3- PeCy7, -anti-CD8-
APC, anti-PD1- FITC antibody (BD Pharmingen,CA, USA) for 20
minute at room temperature in the dark, and then washed twice with
PBS and fixed using 0.1% paraformaldehyde. 30,000 events for T cells
and 80,000 events for DCs were acquired on DAKO flowcytometer.
Data was analyzed using Flow Jo software version 8.7.1 from Treestar,
USA.

In-vitro generation of DCs from PBMCs and their
phagocytotic activity

PBMCs were suspended in RPMI1640 medium supplemented 5%
fetal bovine serum (FBS) in 6 well plastic plates for 3hrs. The non-
adherent cells were gently removed and the adherent cells were
cultured in RPMI-1640 medium supplemented with 10% FBS, 10
ng/mL rhGM-CSF, and 5 ng/mL rhIL-4 (Sigma, USA) in a humidified
atmosphere at 37°C in CO2 incubator.

After three days, immature DCs were seeded in a 6 well plate at 5 ×
105 cells/ well and incubated with 1mg/ml BSA FITC (BD
Pharmingen, USA) for 30 minutes. At the end of incubation, cells were
washed with 1X PBS twice. The degree of phagocytosis was analyzed
by FACS Caliber flow Cytometer. Data was analyzed using Flow Jo
software.

Stimulation of DCs by Different TLR agonists
To determine the frequency of TNF- α and IFN- α production by

DCs, mature DCs were plated, in the presence of different TLR
agonists (TLR7/8, TLR9; 1 µg/ml each (Invitrogen, CA, USA). After
the first 1 h of incubation, Brefeldin-A (Sigma, St Louis, MO, USA) at
a final concentration of 2 μg/ml was added and cells were incubated

further for five hours in CO2 incubator. After incubation, cells were
washed with 1x PBS, centrifuged, permeabilized, fixed, and stained
with APC anti-CD11c, FITC anti- BDCA2 , PE anti- TNF-α or PE
anti- IFN-α (BD Pharmingen, CA, USA). After staining, the cells were
analyzed for flow-cytometric analyses. Data was analyzed using Flow
Jo software version 8.7.1 from Treestar, USA.

Isolation of PanDCs and Total RNA extraction
Approximately 20-25 ml of blood sample was processed from the

patients at baseline and at 24 weeks for the isolation of DCs using
magnet assisted cell sorting Pan DC enrichment kit (Stem Cell
Technologies, USA). Total RNA was isolated from isolated Pan DC+ve
fraction using miRvana kit (Ambion, Life technologies, Bangalore,
India).

Quantitative expression of miRs in dendritic cells
The cDNAs were prepared using universal cDNA synthesis kit

(Exicon, San Francisco, USA). LNA™ PCR amplification was
performed using MicroRNA LNA™ PCR primer sets of miRs- 146, 155,
221 and 222 and ExiLENT SYBR® Green master mix. SYBR® Green is
used for detection of amplification. Quantitative expression of miR
was performed in triplicate in ABI Via7 RT- PCR machine
(Invitrogen, USA). Amplification of 5s-rRNA was used as the control
for normalization.

Statistical analysis
We have compared various immunological parameters at baseline

and at 24 weeks of therapy in both groups as well as between two
groups of monotherapy and sequential therapy. Data were analyzed
with SPSS17.0 statistical software. The comparison between groups
was analyzed using Mann Whitney Test or t-test as appropriate for
continuous data. Qualitative data was analyzed using chi-square test
wherever applicable. Besides this, Wilcoxon signed rank test was used
to see the decreasing viral load in both the therapies. A p value < 0.05
was considered statistically significant.

Results
The clinical characteristics of the 58 patients with chronic hepatitis

B enrolled in the study are shown in Table 1. There were no significant
differences in the age, serum bilirubin, albumin, ALT, and serum HBV
DNA levels between the two. All the patients were HBeAg positive.

Parameter Tenofovir Monotherapy (TM, Gr. 1,
n=30)

Peg-IFN plus Tenofovir Sequential
Therapy (SQT, Gr. 2, n=28) P Values

Age (years) mean ± SD 35.4± 15 29.9 ± 11.9 P=0.13 (NS)

Sex (M:F) 22:08 24:04:00 P=0.24 ( NS)

Median Serum bilirubin (mg/dl; range) 0.7 (0.5-1.2) 0.75 (0.4-1.5) NS

Median Albumin (g/dl ; range) 4.3 (0.8-4.7) 4.35 (3.7-5) NS

Median ALT (IU/L; range) 60.5 (45-230) 62.5 (45-205) NS

HBV DNA (mean ± SD; log10 copies/ml) 6.26 ± 1.25 6.61± 1.16 P=0.33 (NS )

Table 1: Baseline Clinical and Virological Characteristics of patients
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Improved HBeAg Seroconversion with SQT
After initiation of the therapy, there was >2 log reduction in HBV

DNA levels in both groups by 12 weeks and normalization of
ALT (≤40 IU/L) at week 48.There was loss of HBeAg and appearance

of anti-HBe (HBeAg seroconversion) with both therapies. However, in
the SQT, HBeAg seroconversion occurred more frequently than in TM
(21% than 13%) at week 48 (Table 2).

Groups HBV DNA (log IU/ml) eAg Seroconversion (%)

 Baseline 12 Wk 24 Wk 48 Wk Baseline 12 Wk 24 Wk 48 Wk

Mono-Therapy TM (n=
30) 6.26 ± 1.25 2.7± 1.3 1.82 ± 1.2 1.65 ± 0.69 - 13% 13% 13%

Sequential Therapy
SQT (n=28) 6.61± 1.16 3.59 ± 1.4 2.1 3± 1.5 1.48 ± 0.9 - 13% 21% 21.40%

Table 2: eAg Seroconversion During Mono-Therapy and Sequential Therapy.

Improved innate immune functionality with sequential
therapy

Frequencies of myeloid DCs and plasmacytoid DCs: Frequencies of
mDCs and pDCs in the peripheral blood were examined in CHB
patients before and after 24 weeks of therapy. Compared to the
baseline, there was a modest increase in the frequencies of mDCs and
PDCs after 24 weeks of therapy in both the groups (TM; Baseline to 24
wk therapy; mDCs 0.4 ± 0.2% to 1.72 ± 0.9%, pDCs 0.6 ± 0.2% to 1.1±
0.4%, P=NS) (SQT; mDCs 0.6 ± 0.3% to 2.7 ± 1%, pDCs 1 ± 0.4% to
2.14 ± 0.7%, p=NS, Figures 1A and 1B).

Increased Co- stimulatory markers in DCs with Sequential Therapy:
HLA-DR and CD83 are markers of mature dendritic cells. To define
whether drug therapies in CHB patients are associated with functional
alterations of DCs, expression of HLA-DR and CD83 was analyzed
before and after 24 weeks of therapy.

With SQT, there was a significant increase of HLA-DR expression
in pDCs from baseline to 24 weeks (1.0 ± 0.3 vs. 10 ± 2, P=0.04) but
not in mDCs (3 ± 1 vs. 22 ± 2, P=NS). There was a moderate but not a
significant increase in the expression of CD83 in pDCs and mDCs
with SQT (pDCs; 1 ± 0.5 vs. 8 ± 2.1, P=NS; and mDCs; 0.9 ± 0.1 vs. 12
± 3.04, P =NS, Figures 1C and 1D).

With the tenofovir monotherapy however, there were no changes in
the expression of both HLA-DR and CD83 on DCs from baseline to 24
weeks.

When results of both regimens were compared (SQT vs. TM) at 24
weeks, HLA-DR expressions were significantly increased with SQT
than TM in pDCs (11.0 ± 2 vs. 1.5 ± 0.5 P =0.05) and mDCs (22 ± 2 vs.
3 ± 1, P=0.02, Figure 1E). Similarly, CD83 expression was also
increased in pDCs with SQT than with TM (10 ± 2 vs. 1 ± 0.5 v,
P=0.04, Figure 1F).

Increased Toll like receptor expression in DCs with Sequential
Therapy: TLRs recognize pathogen derived products and further
provoke DC maturation and antigen presentation to naïve T cells. We
examined the expression of TLR7 and TLR9, which specifically express
in pDCs and mDCs. With both therapies, there was marginal increase
in expression of TLR7 and TLR9 in DCs at the end of 24 weeks,
importantly, with SQT, change in TLR9 expression in mDCs and
pDCs, was more significant than TM (P=0.04 and 0.02 respectively,
Figures 1G and 1H).

Effect of Sequential Therapy on phagocytic activity of DCs: In order
to address, whether the increased expression of co-stimulatory
molecules such as HLA-DR, CD83 and increased expression of TLR7
and 9 on DCs was related to improved functionality of DCs, we
assessed in vitro generated DCs for their phagocytic activity using a
novel BSA uptake assay. In this assay, BSA was labeled with FITC and
DCs functional ability was determined by the uptake of BSA molecules
by DCs.

The ability of DCs to uptake BSA FITC molecule significantly
increased from baseline values of 9.5% to 61% with SQT, but only to
22% with TM at week 24 (P=0.005, Figure 2A). We measured the
median fluorescence intensity (MFI) of BSA FITC molecule used by
DCs. With ST, after 24 week, DCs showed 300-fold increase in MFI of
BSA FITC molecule from baseline compared to only 50 fold increase
with TM (P=0.02, Figure 2B).

Figure 2: Phagocytic Activity of Immature Dendritic Cells. (A)
Representative dot plot showing BSA FITC uptake by dendritic
cells at baseline and after 24 week of monotherapy or sequential
therapy. Increased BSA FITC uptake was observed by dendritic
cells in sequential therapy. (B) Increased median fluorescence
intensity of BSA FITC molecule after 24 week of sequential therapy.

TLR stimulation increases the Pro-inflammatory Cytokines (TNF-α
and IFN-γ) production by DCs: Next, we evaluated whether DCs
respond to in vitro TLR7/8, TLR9 agonist stimulations, which lead to
increased secretion of TNF-α and IFN-γ pro-inflammatory cytokines.
DCs isolated from whole blood from subjects in both groups at
baseline and at 24 weeks were stimulated with TLR7 and TLR9
agonists and we measured the levels of IFN-γ and TNF- α cytokine
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production. At 24 weeks of SQT, stimulation with TLR7 and TLR9
agonists significantly induced the IFN-γ and TNF-α production by
pDCs and mDCs (P<0.05, Figure 3). However, TM did not result in an
increase of TNF-α and IFN-γ at the end of 24 weeks (Figure 3).

Increased expression of miR- 155 and miR-221 in dendritic cells
with sequential therapy: We further investigated the mechanisms that
could be responsible for mediating the improved phagocytic and
cytokine production by DCs at week 24 week of therapy. . In this
regard, we analyzed the levels of miRNAs that could be directly
responsible for improved DC functionality.

We analysed specific candidate miRNAs namely 146a, 146b, 155
and 221, which are involved in mediating DC proliferation and
maturation. Out of four miRNAs, miRNA 155 and 221 were found to
be influenced during therapy. After 24 weeks of SQT, expression of
miR 155 and miR 221 were significantly increased from baseline
(P<0.05, Figure 3C) compared with patients receiving TM.

Figure 3: TLR agonist stimulations increased the secretion of Pro-
inflammatory Cytokines (TNF-α and IFN-γ) by DCs. (A-B) TLR7/8
and TLR9 agonist was used to stimulate DCs at baseline and after
24 week of mono-therapy and sequential therapy. Mono-therapy
showed no significant increase in the production of IFN-α and
TNF-α secretion; however, there was significant increase in IFN-α
and TNF-α secretion with sequential therapy. (C) Relative
expression of miR 155, 146, 221 and 222 in DCs at baseline and
after 24 week of mono-therapy and sequential therapy; miR-155
and miR-221 expression in DCs was increased in sequential
therapy.

Restoration of adaptive immune response with sequential
therapy

With 24 weeks of either TM or SQT therapy, frequencies of CD8+ T
cells and CD8+CD127+ memory T cells were increased compared to
baseline (Table 3, Figure 4A and 4B). However, using SQT, there was a
significant decrease in the PD-1 expression on CD8+T cells from base
line (45% vs. 4%, P=0.009, Figure 4C and 4D). This was not seen in
patients receving TM (63% vs. 42%, P=NS).

Therapy

% Increase in
frequency of CD8+
T cells (week 24 vs.
Baseline)

% Increase in
frequency of
CD8+ CD127 +T
cells (week 24 vs.
Baseline)

% Decrease in
frequency of
CD8+PD1+ T
cells (week 24
vs. Baseline)

TM 10 ± 2 36 ± 7 17± 4

SQT 16 ± 3.2 45 ± 9 45.5 ± 8.4

P values NS NS P<0.05

% increase or decrease was expressed as mean ± SEM

Table 3: Increased CD8+ and CD8+CD127+ T cells and decreased
CD8+PD1 with Sequential Therapy

Figure 4: Adaptive immune response during both therapies. (A-B)
Representative dot plots showing no significant increase in the
percentages of CD8+ T cells after 24 week of mono-therapy or
sequential therapy. (C-D) PD-1 expression was analyzed during
both therapies; with sequential therapy PD1 expression on CD8+T
cells was decreased.

Discussion
Results of the present study, undertaken to investigate the immune

mechanisms underlying immunomodulation with antiviral therapies
for chronic hepatitis B show that sequential therapy resulted in
functionally more robust DC phenotypes which probably results in
enhanced restoration of CD4 and CD8 T cells by week 24 as compared
to tenofovir monotherapy. Our data also demonstrates that with SQT,
miR 155 and miR 122 expressions was increased in DCs, these micro
RNAs only express during proliferation and activation of DCs.
Therefore, increased expression of miR 155 and miR 122 are the basis
for improved dendritic cell functionality in SQT.

We have earlier demonstrated tenofovir therapy achieves a 2 log
HBV DNA reduction by week 12, but HBV specific adaptive T cell
responses improved significantly only by week 24 [8]. Therefore, in the
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present study, we introduced a strong immuno-modulator (PEG-IFN-
α) after 12 weeks of tenofovir monotherapy and compared the effects
of combination sequential therapy using PEG-IFN to tenofovir
monotherapy at week 24; i.e., 12 weeks after giving a combination. We
correlated this with the clinical and virological outcomes.

Several studies have demonstrated that HBsAg abrogates TLR7 and
TLR9 expression on monocyte-derived DCs, decrease DC
functionality, reduce expression of HLA-DR, CD86, CCRs and
ICAM-1, impair antigen presentation ability, and diminish the
capacity to secrete IL-12 and IFN-γ [4-7,16]. Targeting improved DC
function has been of immense interest in the area of HBV therapeutics.

There is evidence showing that both mDC and pDC are
functionally impaired in patients with chronic hepatitis B [17,18].
Antiviral treatment with adefovir improves the number
and functionality of mDCs, but not of pDCs and hence provides clues
on why current antiviral therapy does not lead to consistently
sustained viral eradication. Anti-viral therapy with telbivudine in
CHBV patients also have shown markedly enhanced expression of
HLA-DR on monocyte-derived DCs with increased capacity to
produce interleukin (IL)-12 [19]. Treatment with ribavirin also
induced the activation of pDCs and mDCs in chronic HBV patients
[20]. Further, in vitro cell based assays showed, DC activity was
enhanced by use of CpG-ODNs [21], HBsAg-activated dendritic cells
[22] or by immunization with dendritic cells pulsed HBV particles
[23,24] and TLR7 agonist [25]. However, a direct relationship between
improved immunity with antiviral treatment and clinical outcomes
such as eAg seroconversion has not yet been established until now.
Our results show that with sequential therapy there were
improvements in the frequency and phenotype of DCs; as measured
by increased co-stimulatory molecules like HLA-DR and TLR 7 and 9
expressions on DCs. Importantly, there was enhanced phagocytic
activity of DCs with SQT, which was proven by uptake of BSA by DCs.
On improvement of DCs functionality, IFN-γ and TNF-α cytokine
secretion was also improved in patients receving the SQT.

Dendritic cell activation was under the tight regulation of several
molecules including many miRNAs [26-28]. Recent studies have
demonstrated several specific miRNAs contribute to DC
differentiation and proliferation [29-31]. Differentiation of immature
DCs to mature DCs is regulated by 27 stage-specific miRNAs and
capable of priming an effective antiviral immunity [31]. Recent
evidence also suggested that these miRNAs may directly regulate IFN-
β protein expression and contribute significantly to the regulation of
IFN in innate immune responses [32]. Therefore, in our study we have
investigated four DC proliferating miRNAs and found that the
improved functionality of DCs was associated with increased
expression of miRNAs specific for proliferation and expansion of DCs.
Our results showed that with sequential therapy improvement in
functionality of DCs was associated with increased expression of miR
155 and miR 221 specific for DC proliferation.

Defects in innate immunity influence further adaptive immunity
and we have analysed few of the adaptive immunity parameters after
both therapies. Before any treatment, adaptive immune response is
generally depressed in CHBV patients due to increase in T regulatory
cells, increase of PD1 expression in CD8 T cells [33]. PD1 expression is
exhaustion marker and increased presence of PD1 indicates exhaustive
CD8+T cells. In our previous study in vitro PD-1 blockade strategy in
CD8+ T cells and Tregs have shown improved survival of HBV-
specific CD8+ T cells [8,34]. In present study also with sequential
therapy, there was steep decrease in PD1 expression on CD8+T cells

and increase in effector T cells. Therefore, in our study, temporal
association of these changes in DC function to a decline in exhausted
PD-1 expressing CD8+T effector cells suggesting improvement in
innate-adaptive cross talk among those individuals receiving
sequential therapy (Figure 5).

Figure 5: Improved Innate and adaptive immunity with sequential
Therapy. Sequential Therapy potentiates DCs which further
modulate CD8 T cells. SQT also helps in reducing the PD1
expression on CD8T cells which make them functional, therefore
SQT enhances both innate and adaptive immune components.

Sequential therapy with Tenofovir and PEG IFN provided the
unique dataset showing prolific anti-HBV immunity with effective
HBV suppression and immune modulation. Since similar results were
not observed with tenofovir monotherapy, a distinct role for
immunosuppressive therapy coinciding with HBV suppression is vital
to achieve optimal therapeutic response. In conclusion, treatment
regimens that combine potent antiviral agents and immune
modulators, such as IFN-alfa or TLR7 agonist need to be investigated
to reduce the need for life-long directly acting antiviral therapy in
CHB patients.
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