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Introduction
Rice is one of the most vital food crops in the world, and is considered 

a model plant for genomics and genetics of cereals [1,2]. Asia cultivates 
90% of all rice and contains 60% of the world population. It is forecasted 
that 40% more rice will be required to satisfy rice consumers [3]. Rice 
grain shape (grain size) is determined by its three dimensions including 
grain length (GL), grain width (GW) and grain thickness (GT). GL and 
GW in rice have high heritability. GT is largely determined by grain 
filling that it is affected by environmental factors such as temperature 
after pollination. Thus, the heritability of GT is relatively low. Rice 
grain shape is frequently associated with 1000-grain weight (KW), one 
component of grain yield [4]. However, grain shape is an important 
appearance quality trait and affects cooking quality [5,6].

Grain shape is regarded as a typical quantitative trait [7,8]. The 
genetic basis of grain shape has been well studied since the 1990s [9-
12]. Hundreds of quantitative trait loci (QTLs) underlying grain shapes 
have been detected using several types of populations [13-17]. Many 
QTLs have been fine mapped, such as qGL3, qGL3.1, qGL7, qGL7-
2 and qGW8.1 [13,18-21]. Near isogenic lines (NILs) have made 
great contributions to QTL fine mapping and cloning. Besides the 
conventional backcrossing strategy for developing NILs, an alternative 
procedure utilizes a selfing and selection scheme. NILs are selected 
from an inbred line that is not entirely homozygous with the approach. 
Progeny of this line will segregate for those loci not yet fixed and will 
represent a heterogeneous inbred family (HIF) of nearly-isogenic 
individuals [22]. In general, it is easy to get a few HIFs for major QTLs 
in the F6 and F7 population consisting of 200 individuals [23].

In recent years, much progress has been made in isolation of QTLs 
for grain shape. Some genes controlling grain shape have been cloned, 
such as GS3, GS5, GW2, GW8, qSW5 and GW5 [4,23-28]. GS3 was the 
first cloned major QTL that largely controlled GL and regulated grain 
weight [4]. GS3 consists of five exons and encodes 232 amino acids (aa) 
with a putative PEBP-like domain. A C–A mutation in the second exon 
occurring between the short-grain (TGC) and the long-grain (TGA), 
changes the cysteine codon to a termination codon, which results in 
a 178-aa truncation in the C-terminus of the predicted protein [4,24]. 
GW2, a major QTL for GW, encodes a RING-type protein with E3 
ubiquitin ligase activity. The ligase can function in degradation through 

the ubiquitin-proteasome pathway in the cytoplasm and negatively 
regulates cell division [26]. The major GW QTL, qSW5/GW5, has 
a 1212-bp deletion associated with the increased grain width. The 
deletion of qSW5 can result in an increase in sink size owing to an 
increase in cell numbers in the outer glume of the rice flower [25]. 
GW5 probably functions like GW2 that is, regulating cell division 
through the ubiquitin–proteasome pathway during seed development 
[28]. GS5 is a minor QTL controlling GW and grain filling. It encodes a 
putative serine carboxypeptidase and functions as a positive modulator 
upstream of cell cycle genes. Evidence shows that its overexpression 
may result in an increase in cell numbers by promoting mitotic division 
[23]. Most recently, GW8, a positive regulator of GW, was cloned. It 
encodes a protein regulating cell proliferation [27]. 

Although several genes controlling grain shape have been cloned, it 
is not sufficient to elucidate the genetic basis of a large variation of grain 
shape in the nature. It is necessary to identify new QTLs for grain shape 
in order to design breeding for grain shape improvement. A population 
derived from a cross between two genetically distant genotypes is 
recommended for QTL analysis. Especially for the previously reported 
grain shape QTL hotspot regions on chromosomes 3 and 5, where many 
QTLs were harbored [29,9,18,10,11,30,20], we should assure how many 
genes there function in regulating the target traits, which is helpful to 
make design breeding for rice grain shape genetic improvement. A 
high-density linkage map is a powerful tool to scan QTLs [16,31-33]. 
Due to its abundance and even distribution throughout a genome, a 
single nucleotide polymorphism (SNP) is considered to be the most 
desirable molecular marker for constructing ultra-high-density genetic 
linkage maps [34,35]. Whole-genome sequencing and oligonucleotide 
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Abstract
Grain shape is an important appearance quality trait that is associated with grain weight in rice. Dissection of the 

genetic basis of grain shape will benefit the improvement of grain shape. In this study, we constructed a high-density 
genetic linkage map via genotyping a recombinant inbred line population by a single nucleotide polymorphism (SNP) 
array. A total of 22 quantitative trait loci (QTLs) were detected, one half was detected in both years of the experiment, 
and the other half only in one year. As well as the QTLs reported in previous studies, five novel QTLs were identified, 
which could be targets for marker-aided selection for grain shape improvement. Six pleiotropic QTLs were identified 
and well explained the correlations among traits. Complementary action of additive QTLs adequately accounted for 
the genetic basis of transgressive segregation. One to six heterogeneous inbred families for all detected QTLs were 
searched in the recombinant inbred population, which provided a good chance to quickly produce near isogenic 
lines. These new QTLs could be quickly validated and fine mapped on the basis of these HIFs.
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Results
Grain shape variation of the RIL population

The RILs showed tremendous transgressive segregation for all traits 
studied. The parents, ZS97 and XZ2 had no significant differences in 
GL, GW, GT and grain weight (Table 1). However, there were large 
variations of grain shape in the RILs in both years. The phenotypic 
values of all the investigated traits in both years had very small values 
of skewness and kurtosis, indicated their normal distributions were 
suitable for QTL analysis (Table 1). Transgressive segregation was 
observed for all four traits in two directions. The mean values of the 
RIL population were very close to the parental phenotypic values. For 
example, GL was in the range of 6.91-9.61 mm with a mean of 8.21 mm 
in the RILs for 2011, which was similar to values for the two parents of 
8.29 mm for ZS97 and 8.12 mm for XZ2.

Heritability and correlation

The broad heritability of the four traits greatly varied within 60.6-
96.1% (Table 1). KW had the highest heritability of 96.1%. GL and GW 
had medium broad heritability > 85%. GT had the lowest heritability of 
60.6%. KW was positively correlated with all the traits investigated, 
which was consistent with KW being the product of the three grain-
shape traits. GW and GT were positively correlated, while GW and 
GL had negative correlations.

Genotypic constitution of the RIL population

Of the 5102 SNP loci in the RICE6K array, 65% showed 
polymorphism between parents. Among 197 RILs, 1495 bins were 
identified on the basis of 5102 SNP sites [11]. At the population level, 
2.9% of SNPs showed heterozygosity among all readable genotypes 
(Table 3). At the level of individual lines, the heterozygous rate at SNP 
sites was in the range of 2.2-16.6% with an average of 2.9% and the 
heterozygous rate at genetic distance was 0–28.1%, with an average of 
3.4% – more than its expected value of 1.6%. At the bin level, 1-7 lines 
were heterozygotes for each bin. On average, each line had about 51 
heterozygous bins.

QTLs for grain shape

Grain length: A total of seven QTLs were identified for GL in the 
population. Five QTLs were detected in 2011 and 2012, respectively. 
Of them, three major QTLs, qGL1, qGL2 and qGL5 were detected in 

Traits Year
Population ZS97 XZ2 Herit

Kurt Skew
M  ±  SD Range M  ±  SD M  ±  SD (%)

GL 2011 8.21 ± 0.54 6.91-9.61 8.29 ± 0.14 8.12 ± 0.12
85.7

-0.31 -0.11

(mm) 2012 8.31 ± 0.55 7.19-9.72 8.23 ± 0.04 8.20 ± 0.05 -0.55 0.01

GW 2011 3.11 ± 0.28 2.54-3.70 3.09 ± 0.11 3.02 ± 0.06
87.3

-0.65 0.05

(mm) 2012 3.02 ± 0.25 2.42-3.66 3.22 ± 0.05 3.08 ± 0.04 -0.48 -0.01

GT 2011 2.04 ± 0.13 1.77-2.37 2.12 ± 0.07 1.91 ± 0.06
60.6

-0.22 0.11

(mm) 2012 2.00 ± 0.12 1.68-2.33 2.04 ± 0.03 1.81 ± 0.01 0.19 -0.1

KW 2011 21.57 ± 2.83 16.40-30.50 22.10 ± 0.80 20.50 ± 0.60
96.1

-0.12 0.47

(g) 2012 19.49 ± 3.00 10.41-27.35 22.60 ± 0.65 20.68 ± 0.21 0.06 0.15

M  ±  SD Mean  ±  Standard deviation; Herit Heritablity; kurt kurtosis; skew 
skewness.
Table 1: Heritability and variation of grain length, grain width, grain thickness and 
kilo-grain weight in the RILs.

microarrays are the two main methods for genotyping SNP markers 
[36,37].

In the present study, we used a SNP array to genotype a recombinant 
inbred line (RIL) population between indica rice Zhenshan 97 (ZS97) 
and japonica rice Xizang 2 (XZ2) a Tibetan cultivar. A high-density 
SNP genetic linkage map was developed and used for mapping QTLs 
for grain shape with the RILs. A series of QTLs were identified and new 
QTLs were found for GW and GT.

Materials and Methods
Plant materials and field experiment

A RIL population, consisted of 197 lines, was developed from a cross 
between ZS97 (Oryza sativa L. ssp. indica) and XZ2 (O. sativa L. ssp. 
japonica) using the single seed descent method. The field experiments 
were conducted following a randomized complete block design with 
two replicates at Huazhong Agricultural University experimental farm 
in Wuhan, China. Generations F7 and F8 of the RILs and the two parents 
ZS97 and XZ2 were planted in the 2011 and 2012 rice growing seasons 
(Table 2). Seven plants for each RIL were transplanted into a one-row 
plot, with a distance of 16.5 cm between plants within a row and 26.5 
cm between rows. Field management essentially followed normal rice 
production practices for the area, with fertilizer applied (per hectare) 
as follows: 48.75 kg N, 58.5 kg P and 93.75 kg K as the basal fertilizer; 
86.25 kg N at the tillering stage; 27.6 kg N at the booting stage. The five 
plants in the middle of each row were individually harvested for grain 
shape and KW measurement.

Trait measurement

From the 197 RIL lines, 153 with normally filled grain were selected 
for trait measurement. Twenty fully-filled grains were randomly chosen 
from the bulked grains of five plants to measure trait values for each 
RIL. GL was estimated twice by placing 10 grains end-to-end in a 
straight line along a ruler. These 20 seeds were individually measured 
for GW and GT using an electronic digital caliper (Guanglu Measuring 
Instrument Co. Ltd., China) with a precision of 0.01 mm. The averaged 
GL, GW and GT values of 20 grains were used as the trait values of that 
line for data analysis. KW was calculated as the grain weight per plant 
divided by its grain number multiplied by 1000 [11,16]. The trait values 
averaged across the two replicates within each year were used as the 
input data for QTL analysis.

Analysis method

Genotyping data by hybridizing F7 DNA with RICE6K SNP array 
was conducted by R software http://www.r-project.org/  and a  high-
density genetic map consisting of 1495 bins was constructed. To scan 
QTLs, the composite interval mapping (CIM) method was adopted in 
the R package r/qtl. There were 1000 permutation tests made for LOD 
threshold values claiming QTLs, resulting in a LOD > 2.5 at genome-
wide level of p=0.05. Three covariates were added in the CIM model and 
‘window’ was set as 10. The confidence region of a detected QTL was 
confined by the function ‘lodint’ and was set as the region decreasing 
1 LOD value around the peak. The explained phenotypic variation and 
additive effect were calculated via linear regression analysis ‘lm’, the 
model was: y = µ + bx + ε, where y is the phenotype in analysis, and 
x is the genotype of the SNP site nearest to the identified QTL. X was 
set at –0.5 when the genotype was from ZS97 and 0.5 otherwise. The 
heritability (h2) was calculated by the formula: h2 = (VR – VE)/VR. Where 
VR is the variation in the RIL population, and VE is the environment 
variation obtained by VE = (VZS97 + VXZ2)/2.
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both years. The QTLs individually explained 5.3-12.6% of phenotypic 
variance. XZ2 alleles at qGL3, qGL5 and qGL12 enhanced GL, while 
ZS97 alleles at the other four QTLs increased GL. 

Grain width: Six QTLs were detected for GW on chromosomes 
2, 3, 5, 6 and 7 (Table 4). Of them, four QTLs were detected in 2011 
and 2012, respectively. Both qGW5 and qGW6 were identified in both 
years. These QTLs individually explained 6.5-23.3% of the phenotypic 
variance. qGW5 has the largest additive effect – it explained 22.9 and 
23.3% of GW variance in both years with positive additive effects of 
ZS97 alleles, while ZS97 alleles had negative effects at qGW6.

Grain thickness: A total of four QTLs were detected on 
chromosomes 1, 3, 5 and 6, contributing 11.5–29.1% of the GT 
variation – all identified in 2012. Two other QTLs, qGT1 and qGT3, 
were identified in 2011. The alleles of XZ2 increased GT at qGT3 and 
qGT6, while ZS97 alleles decreased GT at qGT1 and qGT5. qGT5 
explained about 20% of trait variation in both years.

1000-grain weight: Four of the total of five QTLs was detected in 
both years, except for qKW1, which was detected only in 2011. The five 
QTLs individually explained 3.5-12.5% of the phenotypic variance. 
Either ZS97 or XZ2 alleles increased KW at some QTLs. qKW5 or 
qKW6 had comparatively large effects. The regions harboring qKW5 
and qKW6 also contained QTLs for GT and GW. 

Heterogeneous inbred families for major QTLs: The progeny of a 
HIF constitutes a near isogenic F2 population. In order to quickly obtain 
near isogenic lines for all detected QTLs, we looked into the genome 
constitution of the QTL regions. HIFs for all the 14 bin intervals 
containing these detected 22 QTLs were found, with 1-6 HIFs for each 
QTL region (Table 5). Six HIFs each were searched in the RIL population 
for the three QTL regions of qGL2, qGL10-2 and qGW3-2. Four and five 
HIFs were found in the QTL hotspot regions on chromosomes 5 and 6 
with effects on GT, GW and KW.

Discussion
Novel QTLs in this study

In this study, a total of 22 QTLs were identified for grain shape. 
We compared the detected QTLs with previous studies (http://www.
gramene.org/). Although qGL3 was repeatedly mapped on chromosome 
3, it was distinguished from the cloned QTL GS3 and GL3 [4,24,21] 
by comparing the physical positions of bin interval in which qGL3 is 

located. In addition, no genotyping difference was detected between 
ZS97 and XZ2 by GS3 functional marker SF28, in which both parents 
carried GS3-functional allele (data not shown). qGT6/qGW6 was 
a major QTL in the bin interval of E29–E32, where no GT and GW 
QTL was previously reported (http://www.gramene.org/). Thus they 
are likely novel QTLs. qGT5/qGW5 was located in the qSW5 region. 
qSW5 showed large effects on GW and KW [23]. Hence, we believe 
qGT5/qGW5 is allelic to qSW5. Similarly, we suggested that qGL5, 
qGT1 and qGT3 were new QTLs. These newly identified QTLs would 
be informative for molecular marker-aided selection. The HIFs in the 
target QTL regions would be ideal materials for QTL validation and 
fine mapping [22].

Pleiotropic QTLs

In the present study, six chromosomal regions on chromosomes 1, 
2, 3, 5 and 6 had pleiotropic effects on two or more traits. The QTLs of 
qGW5, qGT5 and qKW5 were located in the neighboring regions on 
chromosome 5. Moreover their confidence intervals largely overlapped. 
Thus, there may be a pleiotropic QTL – indeed qSW5 had pleiotropic 
effects on GW, GT and KW. Thus, we propose that one pleiotropic 
QTL on chromosome 5 controls GT, GW and KW in this population. 
Accordingly, the QTLs of qGT6, qGW6 and qKW6 are regarded as one 
pleiotropic QTL in the region of F45–F69. In addition, the couples of 
qGL1/qKW1, qGL3/qKW3 and qGW3-1/qGT3 would be pleiotropic 
QTLs because they shared overlapping confidence intervals and had 
the same directional additive effects on the traits that were positively 
correlated. The LOD peaks of qGL2 and qGW2 pointed to the same tiny 
region, they had the opposite directional additive effects on the traits 
that did not significantly correlate each other, but negative correlation 
coefficients were detected between GL and GW in both years. They were 
likely one pleiotropic QTL too. Thus the pleiotropic QTLs provided 
good evidence for correlations among traits in the population.

Complementary gene action is the genetic basis of 
transgressive segregation

The parents in the mapping population did not show significant 
differences in GL, GW, GT and KW. Many QTLs were identified, 
which indicated that the genetic constitutions differed between the 
parents. In addition, all traits showed clear transgressive segregation 
in both directions. It is expected that favorable alleles for grain shape 
are sparsely distributed in these two parents. In fact, both ZS97 and 
XZ2 alleles at QTLs had positive and negative additive effects on all 
investigated traits. Thus pyramiding most positive or negative alleles 
in a line resulted in much larger or smaller trait values than for the 
parents, such as RIL100 with the longest GL carried seven positive 
alleles and RIL007 with the shortest GL carried only one positive allele 
(Figure 1). Complementary action of additive QTLs could well explain 
the genetic basis underlying transgressive segregation. A similar result 
was also reported in another population [38].

Traits GL GW GT KW
GL -0.120 0.028 0.310**
GW -0.106 0.473** 0.538**
GT 0.001 0.461** 0.579**
KW 0.363** 0.611** 0.523**

Correlation coefficients in 2011 and 2012 are above and below the diagonal 
respectively. ** significant at the level of P=0.01.

Table 2: The correlation coefficients among four traits in the RILs in two years.

Data types Total Heterozygotes Heterozygous rate %
SNP data points 
(population) 634340 18579 2.9

SNP data points 
(individuals) 3320 0-549.8 (94.1) 0-16.6 (2.9)

Bins (individuals) 1495 0-382 (51) 0-25.6 (3.4)
Genetic distance 
(individuals cM) 1590 0-447.0 (54.7) 0-28.1(3.4)

The data in the parenthesis indicated the average of the RIL population)
Table 3: Heterozygous rate of the RIL population.

Figure 1: Complementary action of additive QTLs could well explain the genetic 
basis underlying transgressive segregation.
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In summary, we detected 22 QTLs for grain shape in the present 
study. Of them, six were probably novel. Pleiotropic QTLs were the 
major genetic basis of correlations among traits. HIFs for all QTLs were 
found and would be good materials for QTL validation. These findings 
will enrich the understanding of grain shape in rice [39].
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