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Abstract

Osteoarthritis (OA), the most common degenerative joint disease, results from an imbalance between
chondrocyte-controlled anabolic and catabolic processes. OA is characterized by progressive degradation of
components of the Extracellular Matrix (ECM) within the articular cartilage, correlated with secondary inflammation.
Several studies had investigated the morphological and biochemical changes during OA progression. However, a
comprehensive study of the OA pathogenesis still remains to be elucidated to find the best therapy for OA. In this
review, recent advances in our understanding of the mechanisms of action of Sphingosine 1-phosphate (S1P) and
Smad3 independently and in relation to Temporomandibular Joint Osteoarthritis (TMJ-OA) will be discussed. S1P
receptors are expressed on the cell surface and are internalized upon binding of the bioactive lipid, S1P, as part of
the migratory response. Meanwhile, Smad3 is an intracellular signaling molecule that mediates signaling from
transforming growth factor-β (TGF-β) and activin receptors. Crosstalk between the TGF-β/Smad3 and S1P/S1P3
signaling pathways regulates cell motility and apoptosis in chondrocyte cells. Thus, Smad3/S1P3 signaling in
chondrocytes may be responsible for the development of TMJ-OA, and the potential for these proteins to represent
targets for the treatment of TMJ-OA warrants further study.
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Introduction
Mandible, a part of the human masticatory system, through

contractions of the neuromuscular controls direction of joint loads as
dictated by dental eruption and growth of the Temporomandibular
Joint (TMJ) eminence [1,2]. The motion of the mandible is relative to
the cranial base and distributes the normal stresses of function
(speaking and chewing) and parafunction (bruxism and clenching) [3].
A number of clinical orofacial conditions that involve the masticatory
musculature, the TMJ, and associated structures are referred to as
Temporo Mandibular Disorders (TMD). A severe TMD is
osteoarthritis (OA) which often affects the TMJ of patients and
involves changes in the subchondral bone and progressive cartilage
degradation [4].

In the mandibular condyle, endochondral ossification is the primary
process by which subchondral bone is formed and this process is
regulated by endogenously expressed factors in chondrocyte. Loss of
cartilage integrity caused by (bio)mechanical, biochemical,
inflammatory, or immunologic in character disturbs the chondrocyte-
controlled balance between synthesis and degradation of the ECM
components [5,6]. Increased synthesis and activity of proteases,
resulting in an initially degradation of articular cartilage [6,7]. During
late stage of OA, severe fibrillated and eroded tissue is may appear and
neovascularization of TMJ articular cartilage may be present.
Denudation of subchondral bone is frequently seen. Synovial
membrane may appear hypervascularization and hyperthropic, or
fibrotic and disc displacement and perforation may develop [6].

To date, the relationship between subchondral bone abnormalities
and the onset of TMJ-OA has not been determined. It is hypothesized

that the accumulation of chondroprogenitor cells at injury sites is due
to the migration of these cells from the surrounding matrix [8-12].
Migratory chondroprogenitor cells that are present in cartilage
represent a valuable resource for improving cell recruitment into
cartilage defects without the need for perforation of the subchondral
bone plate. In addition, migratory chondroprogenitor cells have the
potential to support the endogenous repair of blunt injured cartilage
when traumatic chondrocyte loss has occurred. However, the potential
physiologic and/or pathologic functions of chondroprogenitor cells
and their migratory effects on healing in TMJ-OA joints remain
unknown.

Several studies have reported that a subset of the effects elicited by
the TGF-β/Smad3 signaling pathway are transmitted via a pathway
that is initiated by activation of Sphingosine Kinase (Sphk), followed
by intracellular generation of the bioactive lipid, Sphingosine 1-
phosphate (S1P) [13]. Here, we highlight that TGF-β/Smad3 signaling
influences cartilage homeostasis by influencing S1P/S1P receptor
signaling and chondrocyte migration.

Pathogenesis of TMJ-OA
In elderly adults, chronic disability is most often caused by OA. In

the early stages of OA, it has recently been demonstrated that low bone
mineral density and increased bone turnover are observed in the knee
joint [14-16]. Efficacies of bone resorption inhibitors for the rescue of
OA have also been reported [15,17,18]. Taken together, these results
suggest that abnormal subchondral bone remodeling is important in
the pathogenesis of knee OA.

However, the TMJ is one of the most common sites of OA and TMJ-
OA may be part of generalized OA [19-21]. TMJ-OA is present in 70%
persons of 73-75-year age group and 89% of patients with or without
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reduction of disc displacement [20,22]. TMJ-OA can affect all TMJ
tissues to induce anatomical changes and severe pain [4].

It is hypothesized that the subchondral bone has an etiological role
in TMJ-OA pathology based on recent observations that increased
remodeling of mandibular condylar subchondral bone occurs in the
early stages of TMJ-OA [23-25]. Moreover, the relationship between
the development of TMJ-OA and the abnormalities in subchondral
bone remains to be determined, and this is an area of active study.

The key mediators of cartilage degradation in vivo and in vitro
include the Matrix Metalloproteinase (MMPs) and members of the
closely related family of a disintegrin and Metalloproteases (ADAMs)
with Thrombospondin motifs (ADAM-TS) [26,27]. Roles for matrix
MMP-13 and ADAM-TS5 in this degeneration process have been
demonstrated [28-33]. Subsequently, key roles have been identified for
complement component 5 (C5) [34] and hypoxia-inducible factor-2α
(HIF-2α) [35,36]. As OA progresses, articular chondrocytes express
interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), runt-related
transcription factor 2 (RUNX2), alkaline phosphatase, MMP-13, and
type X collagen. Concomitantly, articular cartilage exhibits expanded
calcified cartilage zones and low levels of proteoglycans [37-42].

Nitric Oxide (NO) as a free radical play a role in the apoptosis of
chondrocytes and inhibits proteoglycan synthesis. These may
contribute to the abnormal chondral calcification and osteophyte
formation [43,44]. Mitogen-inducible gene-6 (Mig-6), immediate early
response gene encoding via threonine kinase receptors, plays an
important role in maintaining joint homeostasis. Thus, the
involvement of other cells may engage in the pathogenesis of OA [45].

In OA, a primary concern is the degeneration of articular cartilage
[33]. The initial and repair stage of OA is characterized biochemically
by an increased synthesis of ECM components, DNA, and metabolic
activity of the chondrocytes. Accounting for the proliferation, mitoses,
and clustering observed histologically [6,42,46]. The repair response is
mediated by growth factors (e.g., insulin-like growth factor-1 (IGF-1)
and transforming growth factor-β (TGF-β)), and is partially
determined by the difussibility of these growth factor through the
cartilage matrix to the chondrocytes [47-49]. Moreover, growth factors
that are normally bound to the ECM components will be released by
cartilage degradation and thereby stimulate the chondrocytes in their
repair responses. Balance between repair and degradation established,
an increased synthesis of the ECM components equals their
degradation due to an increased protease activity [6].

To date, the molecular mechanism responsible for mediating the
progression from defective subchondral bone to degeneration of
articular cartilage in OA remains largely uncharacterized.
Acknowledgment of the imbalance anabolic and inflammatory/
catabolic pathways has led to explored interest in treatment of OA with
limited side effect that may be able to encourage maintenance of bone
turnover and chondral homeostasis [39,44].

The TGF-β/Smad3 signaling system and OA
There are three subfamilies of TGF-β that closely related to the

mammalian isoforms, TGF-β1, -β2, and -β3 [50,51]. Proteins of the
TGF-β family mediate signaling pathways via serine/ threonine kinase
receptors [52]. Specifically, type II serine/threonine kinase receptors
(TGFβR II) are activated following their binding of type I serine/
threonine kinase receptors (TGFβR I) [53].

Intracellular Smad proteins (50-70 kDa), particularly Smad2 and
Smad3, then transmit this activation signal and that of activin to the
nucleus. In addition, when a Smad protein is activated by a receptor, its
phosphorylated form is able to heterodimerize with Smad4 and
translocate to the nucleus where the complex mediates the
transactivation of specific target genes. Meanwhile, Smad1, Smad5, and
Smad8 transduce signaling from BMP. Conversely, Smad6 and Smad7
provide an inhibitory function whereby phosphorylation of pathway-
specific Smads is inhibited and signal transduction is disrupted [53].

When chondrocyte-specific deletion of Smad3 was achieved in
mice, OA in the knee joint was induced [54]. Correspondingly, in
humans, mutations in Smad3 have been found in the MH2 domain of
Smad3 protein, a region that is extremely well conserved among other
species and among other Smad proteins that are associated with early
onset of OA [55]. More recently, when overexpression of TGF-β1 was
achieved in murine subchondral bone, mandibular condyle
degradation was observed [56]. In our own study of mandibular
condylar subchondral bone, spontaneous abnormalities were found to
induce progressive cartilage degradation in Smad3−/− mice [57].

Chondrocyte death is commonly accepted as a hallmark of OA. It
has been observed that the extent of chondrocyte death that occurs
positively correlates with the severity of osteoarthritic cartilage
depletion and destruction [58,59]. In our recent study, cell death in the
condylar cartilage of Smad3−/− mice appeared to be progressive since
the numbers of both TUNEL+ and active caspase-3+ and caspase-9+
cells did not significantly differ from those detected in 1-month-old
Smad3−/− mice, yet they were markedly higher in the 4-month-old
Smad3−/− mice [57].

S1P/S1PR system
In both healthy and disease states, the bioactive Sphingolipid

metabolite, sphingosine 1-phosphate (S1P), contributes to regulating
many cellular processes [60]. For example, the ability of S1P to act via a
family of cell surface receptors and to play a critical role in the
migration of immune cells throughout the body has been well studied.
In addition, control of cell trafficking is a well characterized aspect of
the involvement of S1P in disease [61]. To date, there are five G-
protein-coupled receptors at the cell surface that have been found to be
specific for S1P. They include S1PR1-5, and activation of S1P1 is critical
for immune cell trafficking [62]. However, in the glomeruli of rats with
diabetic nephropathy, it was recently observed that S1P signals are
preferentially transmitted through S1P2, rather than S1P1 [63]. It is
possible that this biased delivery of S1P signals may mediate the
pathogenesis of endothelial injuries in diabetic nephropathy [63]. S1P2
was also recently shown to be expressed in enteric neurons and
migrating cranial crest cells, while expression of S1P1 is significant in
the neuroepithelium [64]. Meanwhile, S1P4 and S1P5 are expressed at
later stages in neurons [64]. S1P3 primarily localizes to the cell surface
on the plasma membrane, and high expression levels of S1P3 have been
detected in lung, heart, kidney, spleen, diaphragm, and intestine tissues
[65]. Moreover, for neurogenesis and for expression of smooth muscle
alpha-actin following arterial injury [66], S1P3 has been found to be
essential [67]. S1P3 also contributes to the migration of thyroid cancer
cells [68] and VEGF-A secretion induced by S1P [69]. Furthermore,
compared with other S1P receptor subtypes, S1P3 receptor antagonists
have no effect on S1P-induced Mitogen-Activated Protein Kinase
(MAPK) activation [70]. Thus, a role for S1P3 in MAPK signaling has
been excluded.
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Challenges for regenerative therapy approaches currently include
modulation of MMPs, recruitment of chondroprogenitor cells to
affected cartilage, and the impact of the extracellular matrix on cell
migration [8-10]. Regarding the latter, the regulatory functions of
bioactive lysophosholipids, primarily S1P, in cell migration have led to
the identification of these proteins as potent mediators of wound
healing and tissue repair. Moreover, S1P is released from most cells
after they are stimulated by growth factors such as TGF-β. Therefore,
S1P receptors should be considered in chondrocyte cell migration,
despite a role of S1P receptors in OA being largely uncharacterized.
Renal mesangial cells express several S1P receptors (e.g., S1P1-5), and
these receptors potentially mediate mobilization of intracellular
calcium, cell proliferation, and activation of the classic MAPK
signaling cascade [71]. In the present study, wild type and Smad3−/−
chondrocyte cells derived from condylar cartilage were analyzed [57].
The former expressed higher levels of S1P3 compared with the other
S1P receptors assayed. Conversely, expression of S1P3 by the Smad3−/−
primary chondrocytes was significantly weaker. This difference in S1P3
expression was further enhanced following stimulation with TGF-β
[57]. These results are consistent with the observation that signaling
via the Sphk1/S1P3 axis is enhanced during the transdifferentiation of
myoblasts into myofibroblasts in response to TGF [72,73]. However, it
is important to note that knee hyaline articular cartilage is distinct
from mandibular condylar cartilage.

S1P and TGF-β/Smad3 crosstalk in wound healing
It has been observed that TGF-β increases Sphk1 activity and up-

regulates mRNA and protein levels of Sphk1 in dermal fibroblasts [74].
Thus, it is hypothesized that crosstalk between TGF-β and S1P
regulates MMP expression. S1P utilizes signaling by its receptors to
stimulate phosphorylation and activation of TGFβR I kinase, thereby
leading to phosphorylation of Smad2 and Smad3 independent of TGF-
β ligand, as well as an induction of both proliferation and migration in
keratinocytes [75]. Abrogation of Smad3 appears to prevent S1P-
mediated effects [57,72,75,76], and this suggests a surprising, and yet
essential, role for Smad3 in the signaling cascade of the
lysophopholipid, S1P. A role for S1P3 in Smad3 activation was
confirmed with the use of small interfering RNA (siRNA) targeting
S1P3 and suramin [57,72]. Correspondingly, suramin was reported to
be a selective agonist of the S1P3 receptor in vitro [77]. Abrogation of
S1P-stimulated Smad3 activation by siRNA targeting TGFβR II further
supports the hypothesis that TGFβR II is a component of the S1P
signaling cascade [57].

For cell migration, Rho GTPases are critical for coordinating the
cellular responses involved [78,79]. In the present study, the Rho
GTPases that were assayed exhibited increased levels of activity
following stimulation by TGF-β. However, when primary chondrocyte
cells were transfected with siRNA targeting S1P3 and then were
stimulated with TGF-β, the activity levels of GTP-Rac1, GTP-RhoA,
and GTP-Cdc42 decreased [57].

Conclusion
Overall, these findings suggest a model in which chondrocyte cells

are maintained via crosstalk between the TGF-β/Smad3 and S1P/S1P3
signaling pathways. The crosstalk between these pathways also
regulates cell motility and apoptosis in these cells. Thus, Smad3/S1P3
signaling in chondrocytes may be responsible for the development of
TMJ-OA, and the potential for these proteins to represent targets for
the treatment of TMJ-OA warrants further study (Figure 1).

Figure 1: A proposed model for the mechanisms by which crosstalk
between the TGF-β/Smad3 and S1P/S1P3 signaling pathways
regulates chondrocyte migration. The maintenance of chondrocyte
cells, which includes the processes of cell motility and apoptosis, is
regulated by crosstalk between the TGF-β/Smad3 and S1P/S1P3
signaling pathways. Furthermore, Smad3/S1P3 signaling in
chondrocytes may play a crucial role in the cause of TMJ-OA.
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