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Abstract
Fusing high-spatial resolution panchromatic and high-spectral resolution multispectral images with complementary 

characteristics provides basis for complex land-use and land-cover type classifications. In this research, we investigated 
how well different pan sharpening algorithms perform when applied to single-sensor single-date and multi-senor 
multi–date images that encompass the Horton Plains national park (HPNP), a highly fragile eco-region that has been 
experiencing severe canopy depletion since 1970s, in Sri Lanka. Our aim was to deliver resolution-enhanced multi-
temporal images from multiple earth observation (EO) data sources in support of long-term dieback monitoring in the 
HPNP. We selected six candidate fusion algorithms: Brovey transform, Ehlers fusion algorithm, high-pass filter (HPF) 
fusion algorithm, modified intensity-hue-saturation (MIHS) fusion algorithm, principal component analysis (PCA) fusion 
algorithm, and the wavelet-PCA fusion algorithm. These algorithms were applied to eight different aerial and satellite 
images taken over the HPNP during last five decades. Fused images were assessed for spectral and spatial fidelity 
using fifteen quantitative quality indicators and visual inspection methods. Spectral quality metrics include correlation 
coefficient, root-mean-square-error (RMSE), relative difference to mean, relative difference to standard deviation, 
spectral discrepancy, deviation index, peak signal-to-noise ratio index, entropy, mean structural similarity index, spectral 
angle mapper, and relative dimensionless global error in synthesis. The spatial integrity of fused images was assessed 
using Canny edge correspondence, high-pass correlation coefficient, RMSE of Sobel-filtered edge images, and Fast 
Fourier Transform correlation. The Wavelet-PCA algorithm exhibited the worst spatial improvement while the Ehlers. 
MIHS and PCA fusion algorithms showed mediocre results. With respect to our multidimensional quality assessment, 
the HPF emerged as the best performing algorithm for single-sensor single-date and multi-sensor multi-date data fusion. 
We further examined the effect of fusion in the object-based image analysis framework. Our subjective analysis showed 
the improvement of image object candidates when panchromatic images’ high-frequency information is injected to low 
resolution multispectral images.

Keywords: Image fusion; Fusion evaluation; Ecosystem monitoring;
Canopy dieback; Horton plains; Sri Lanka

Introduction
Forest ecosystems in developing countries are being depleted at 

alarming rates [1,2]. Sri Lanka is classified as one of the 25 biodiversity 
hotspots in the world. The country harbors two world-heritage nature 
reserves designated by the United Nations Educational, Scientific and 
Cultural Organization (UNESCO). Sri Lanka has been experiencing 
severe depletion of its biodiversity owing to overwhelming 
anthropogenic stresses acting on forest ecosystems. During last 
century, Sri Lanka’s total close-canopy forest cover has been decreased 
from about 84% of the total area to about 30% [3-5].

The Horton Plains National Park (HPNP) is a UNESCO designated 
world heritage nature reserve, which is located in the Central Highlands 
of Sri Lanka. This fragile eco-region provides habitats for nearly half of 
Sri Lanka’s endemic flowering plants and endemic vertebrates [6,7]. 
Studies reveal that some selected sites of HPNP are represented by 57 
species of vascular plants belonging to 44 genera and 31 families [8]. 
Of these, 18 species are only seen in montane forests in Sri Lanka and 
India [7]. Apart from invaluable ecological richness, HPNP’s serene 
landscape has made an inextricable link to Sri Lanka’s tourism industry.

The HPNP has been received greater attention during last three 
decades owing to the sever canopy diebacks reported in certain parts 
of the park. Since the initial documentation occurred in late 1970s 
[9,10], nearly 37 plant species have been susceptible to dieback and 26 
among them are endemic to Sri Lanka [11,12]. Through ground-based 
inventories of canopy cover and health status, investigators noted that 
approximately 17.2% of forested areas (~655 Ha) in the national park 

have been subjected to severe dieback [12,13]. Families like Lauraceae, 
Simplocaceae, and Myrtaceae have shown a greater vulnerability to 
forest dieback. Syzigium rotundifolium, Ilex walkeri, Euodia lunu-
ankenda, Symplocos bractealis serve as the dominant species susceptible 
to forest dieback [11]. Ediriweera et al. [7] noted that the susceptibility 
to dieback gradually increases as the DBH class increases. Owing to 
HPNP’s high ecological and cultural values, there has been a growing 
interest on understanding factors associated with the canopy depletion. 
Several theories have been put forwarded such as, acid rain [14], 
climate change [15], elevated total nutrient content [16], diseases [11], 
sambur damage, and heavy metal contamination [6,12,17], however, 
the etiology of the forest dieback remains unexplained.

The utility of Earth Observation (EO) data in complex land 
cover mapping applications is a well addressed research problem, 
There is a plethora of literature on how air- and space-born data with 
varying spatial (coarse, moderate, high and very-high resolution), 
spectral, and radiometric resolutions assist in multi-scale vegetation 
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information extraction, ranging from forest stand to individual tree 
canopies. However, we believe that the full strength of EO data and 
advanced image processing techniques are weakly exploited in relation 
to ecological applications in Sri Lanka. Remote sensing serves as a 
cost effective tool for developing countries [18]. Excluding very high 
resolution commercial satellite images, many other civilian-use sensors 
provide image data through public domains at no cost. For example, 
current and archived images of LandSat MSS/TM/ETM+, EO-1 ALI/
Hyparion, ASTER, and MODIS can be freely downloaded from the 
United States Geological Survey (USGS) Earth Resources Observation 
and Science (EROS) Center (http://www.earthexplorer.usgs.gov), 
global data explorer (http://www.gdex.cr.usgs.gov), and University 
of Maryland’s Global Land Cover Facility (GLCF) (http://www.glcf.
umiacs.umd.edu). These images cover large geographical areas and 
offer the possibility of time series analysis given the large quantity of 
archived data spanning many years. Low spatial resolution of these 
images (e.g. LandSat MSS 60m) stands as the main disadvantage 
because accurate vegetation mapping also requires high frequency 
information. In this context, fusing multi-platform data types with 
complimentary characteristics serve as one of the most viable and cost 
effective solution.

Moderate and very-high resolution sensors typically record image 
data in a low resolution multispectral (MS) mode and high resolution 
panchromatic (PAN) mode (e.g., EO-1 ALI: PAN = 10m, MS = 30m; 
SPOT-5: PAN 5m, MS = 10m; IKONOS: PAN = 1m, MS = 4m, 
WorlView-2: PAN = 0.46cm, MS = 1.84m) due to the limited on-board 
storage capacity and data transmission rates from space-born platforms 
to the ground stations [19-21]. The high spatial resolution is needed to 
accurately describe the shapes of features and structures, and the high 
spectral resolution is needed to classify complex land-use and land-
cover types [22-24]. Fusing PAN and MS images with complementary 
characteristics can provide a better visualization of the observed area 
[22,23]. Image fusion can be applied to various types of data sets, 
such as single-sensor single-/ multi-date (e.g. PAN and MS images of 
IKONIOS, SAR multi-temporal images), multi-sensor single- /multi-
date (e.g. high and low resolution images of SPOT and LandSat, VIR 
and SAR multi-temporal images), single-data from multiple sensors 
(e.g. ERS-1 and ERS-2), and RS data with ancillary data (e.g. fusion of 
images with topographic maps). Many image-fusion algorithms were 
developed for combining complimentary characteristics of PAN and 
MS images to produce an enhanced multispectral image of high spatial 
resolution. Several classifications for grouping fusion algorithms have 
been proposed in literature [20,22,24-27]. In general, fusion techniques 
can be grouped as spectral substitution methods, arithmetic merging, 
and spatial-domain methods.

A fusion algorithm that preserves the spectral properties of the MS 
data and the spatial properties of the PAN data would be ideal, but 
there is always compromise [28,29]. Many studies report the problems 
and limitations associated with different fusion techniques [30,31]. The 
most-encountered problem in fusion algorithms is that the fused image 
exhibits a notable deviation in visual appearance and spectral values 
from the original MS image [32]. Spectral distortions including spatial 
artifacts affect both manual and automated classifications because any 
error in the synthesis of the spectral signatures at the highest spatial 
resolution incurs an error in the decision [23]. Qualitative comparison 
of the fused image and the original MS and PAN images for color 
preservation and spatial improvements is the most simple but effective 
way of benchmarking different fusion algorithms [28,33]; however, 
visual inspection methods are subjective and largely depend on the 
experience of the interpreter [24,34].

A number of objective metrics have been proposed to quantify 
spectral and spatial distortions incurred during the fusion process. Most 
widely used metrics for evaluating spectral fidelity are two-dimensional 
Correlation Coefficient (CC), Root Mean Squared Error (RMSE), 
relative difference of means, relative variation, deviation index, and 
band discrepancy. Workers like Vijayaraj et al. [35], Karathanassi et al. 
[36], Yakhdani and Azizi [27], and Witharana et al. [29] utilized Peak-
Signal-to-Noise Ratio (PSNR) and entropy as spectral quality metrics 
in addition to common indicators. Wald [22] proposed the ERGAS 
metric (from its French acronym: erreur relatif globale adimensionnelle 
de synthe`se, which means relative dimensionless global error in 
synthesis), which aims to provide a quick but accurate measure of the 
overall quality of a fused product. Few workers used the spectral angle 
mapper (SAM) to assess the overall spectral quality of fused images. 
Wang et al. (2004) proposed another metric called Mean Structure 
Similarity Index (MSSIM), which was developed based on the findings 
of Wang and Bovik (2002). Compared to spectral quality indicators, 
only few metrics are available to evaluate the spatial fidelity of fused 
images [29,37], Ehlers et al. [24], Gangkofner et al. [20], Klonus and 
Ehlers [34], Yakhdani and Azizi [27], and Witharana [28] used high-
pass correlation and edge detection using filters like Canny, Sobel, and 
Perwitte.

This study serves a corner stone of our ongoing effort on 
introducing Geographic Object-Based Image Analysis (GEOBIA, 
also called OBIA) framework to the vegetation mapping efforts in 
the HPNP aiming on two foci: 1) forest dieback and 2) invasive plant 
species. GEOBIA (or OBIA) is a novel conceptualization of image 
understating that mimics innate cognition abilities of humans. Unlike 
pixel-based paradigm that is solely driven on spectral signatures of 
individual pixels, GEOBIA integrates spectral, spatial, and contextual 
properties into image classification workflows (Balschke 2010). Thus, 
in case of GEOBIA, spatial properties of images cannot be overlooked 
and injection of high frequency information is necessary for better 
image segmentation results. The central objective of this research is to 
investigate how well different fusion algorithms when applied to single-
sensor single-date and multi-senor multi–date images taken over the 
Horton Plains national park representing crucial time intervals. The 
spectral and spatial fidelity of fused images were assessed using a variety 
of quantitative quality indicators and visual inspection methods. The 
quantitative indicators include eleven spectral quality metrics and 
three spatial quality metrics. A novel spatial metric based on Fourier 
transform was also integrated into our spatial quality budget. We made 
few preliminary quality assessments on image segmentation results to 
demonstrate the importance of data fusion in segmentation workflows.

The remainder of this paper is structured as follows. Section 2 
describes study areas, image data, fusion algorithms, and evaluation 
methods. Section 3 reports the spatial and spectral fidelity of fused 
products in terms of quantitative indices and visual inspections. 
Section 4 contains a discussion explaining the results based on the 
performances of fusion algorithms. Finally, conclusions are drawn in 
Section 5.

Materials and Methods
Study area and data

The Horton Plains national park encompasses 3,200 Ha in Central 
Highlands of Sri Lanka (Figure 1). The park comprises upper montane 
rain forest (cloud forests) and wet patana grasslands and characterized 
by undulating terrain of rolling hills and valleys with a network of 
streams. The annual rainfall in the area ranges 2000 mm - 5000 mm. 

http://www.earthexplorer.usgs.gov
http://www.gdex.cr.usgs.gov
http://www.glcf.umiacs.umd.edu
http://www.glcf.umiacs.umd.edu
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We selected a representative study area from the south west corner of 
the park comprising major land cover types and observable canopy-
cover changes occurred over the time.

Image scenes used in this study belong to two different platforms: 
1) air-borne and 2) space-borne. The former group entails images 
from two different aerial missions commissioned in year 1956 and 
1986. The latter comprises images acquired by four different satellite 
sensors ranging from moderate spatial resolution to very-high spatial 
resolution (Figure 2). Table 1 summarizes general characteristics of 
the source data. The images are spatially registered to the Universal 
Transverse Mercator (UTM) coordinate system on the WGS 84 datum.

Methods

We selected a 2km x 2km subset as the focal Area of Interest (AOI). 
The selection of the subset was made focusing on the land cover types 
that are most likely to be extracted (e.g., water, grassland, forest, and 
riverine vegetation) and distinct changes occurred over the time (e.g., 
depleted forest cover) .Aerial images acquired in 1956 and 1986 were 
scanned using 600 dots-per-inch (dpi) resolution and stored as 8-bit 
data. The images were then ortho-rectified using 90 meter Shuttle 

Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) 
and co-registered with the IKONOS (2005) image. The scales of these 
images were known but lines-per-inch (lpi) count was unavailable, 
we therefore set spatial resolution of pre-processed images to 2m 
resolution. All other moderate resolution satellite images were co-
registered with the IKONOS image to maintain the spatial consistency. 
We aimed to maintain the maximum spatial resolution ratio between 
PAN and MS as 1:4. Thus, high spatial resolution images were re-
sampled as necessary to maintain 1:4 ratios. In case of the 1956 aerial 
(2m) and the 1972 LandSat MSS (60m) fusion, the aerial image was 
degraded to 15m resolution. When fusing the 1986 aerial (2m) and the 
1992 LandSat TM (28.5m) images, the former was down sampled to 
7m resolution.

We tested six fusion algorithms that are commonly encountered 
in the literature and built into image processing software packages: 
1) Brovey (EH) transform, Ehlers (EH) fusion algorithm, High-Pass 
Filter (HPF) fusion algorithm, Modified Intensity-Hue-Saturation 
(MIHS) fusion algorithm, Principal Component Analysis (PCA) 
fusion algorithm, and the Wavelet-PCA (WV-PCA) fusion algorithm. 
Discussion of theoretical basis of these candidate algorithms is beyond 

Figure 1: Geographical setting of the Horton Plain national park. The park boundary (white solid line) and the area-of -interest (yellow dashed line) are shown on the 
area-detailed map.
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Aerial image (1956) LandSat MSS (1972)

Aerial image (1986) LandSat TM (1992)

LandSat ETM+ PAN (2000) LandSat ETM+ MS (2000)

LandSat ETM+ PAN (2003) EO-1 ALI MS (2003)

EO-1 ALI PAN (2004)) EO-1 ALI MS (2004)

IKONOS PAN (2005) IKONOS MS (2005)

Figure 2: Subsets (2 km x 2 km) of candidate panchromatic (PAN) and multispectral (MS) images used for pan sharpening.
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our scope and we refer readers to relevant literature listed in Table 
2. We used ERDAS Imagine 2011 to implement fusion algorithms. 
Some of the candidate fusion algorithms are proprietary (e.g., Ehlers 
fusion - ERDAS Imagine). Unlike the Brovey transform algorithm, 
which produce three-band fused images (B, G, and R or G, R, and 
NIR); other candidate algorithms are capable of accepting more 
than three bands at a time and producing four-band fused images 
in a single iteration. Therefore, we produced true- and false-color 
composites of BT algorithm and layer-stacked them to create four-
band pan sharpened images. Fusion results were assessed using a series 
of quality metrics along with detailed visual inspection procedures to 
evaluate the spectral and spatial fidelity of fused products compared to 
their original MS and PAN images. Objective metrics were calculated 
independently for each subset and separately for each band (except 
for ERGAS and SAM). Subsequently, mean values were calculated 
for all bands. Use of eleven spectral and three spatial metrics, totaling 
14 objective quality indicators in our evaluation procedure, might be 
questionable because these metrics. However, our justification is that it 
is important to employ a full complement of objective quality indicators 
and reexamine their stability and redundancy, and investigate the 
dependency of the ranking of fusion algorithms on quality metrics. 
These metrics’ mathematical and statistical bases are well addressed in 
literature; we therefore refer readers to Table 3 for relevant references. 
Beyond commonly found spatial quality indicators, we tested a new 
metric based on the Fast Fourier Transform (FFT) to assess the spatial 
fidelity which was initially proposed by Civco et al. [38]. In our recent 
work [37], we further investigated the discriminative capacity of this 
metric. Our argument is the original PAN image and the fused image 
should resemble in the Fourier domain if high frequency information 
is inject from the PAN image to the MS image during fusion. The 
fusion-evaluation workflow is depicted in Figure 3.

In order to demonstrate the value of injection of spatial structures 
into MS images in GEOBIA framework, we introduced fused product 
of 1956 aerial and 1972 LandSat MS fusion and the original LandSat MS 

image to the eCognition Developer’s Multi resolution Segmentation 
Algorithm (MRS). The quality of image segments (also called image 
object candidates [39]) of fused and non-fused images were compared. 
With the capability eCognition Developer’s Cognition Network 
Language (CNL), an exemplar classification was done by applying a 
class-modeling approach [40] where object candidates were refined in 
cyclic and adaptive manner to represent meaningful target.

Results
Fusion evaluation

Visual assessment: To inspect the color preservation and spatial 
improvement, fused images were compared to the original MS and 
PAN images, respectively. We selected false-color composites (bands 
2, 3, and 4) for visual inspections because this band combination is 
widely used for many remote sensing applications. However, we had 
to use a true-color composite for the ALI (2004) single-sensor fusion 
Fused images along with their original images were inspected by 
two photo-interpretation experts to identify any spectral distortions, 
(e.g., brightness reversions, saturation, a complete change of spectral 
characteristics, unnatural/artificial colors) and spatial improvement. 
Although we inspected all fused images, only four scenarios are 
presented, i.e., aerial (1956) - LandSat MSS (1972), aerial (1986) - 
LandSat TM (1992), LandSat ETM (2003) - ALI (2004), and IKONOS 
(2005) in Figures 4-7, respectively. Based on expert evaluations, fused 
products were ranked and the results (best and worst fusion algorithms) 
are listed in Table 4.

Quantitative assessment: We corroborated visual assessment with 
eleven spectral metrics and three spatial metrics. In order to give a 
detailed picture, band-wise scores of CC and PSNR and global scores 
of ERGAS and SAM are shown in Figure 8. Tables 5-10 summarize 
the mean scores (averaged over bands) reported by quality metrics for 
the six fusion scenarios. Fusion algorithms in each table are ranked by 
their correlation coefficient scores. The best value reported to a given 

Platform Sensor Acquisition 
date

Properties
Source

spatial/scale spectral radiometric

A
er

ia
l Unknown 1956 1:40,000 PAN Scanned and 
stored as 8 bit 

data

Department of Geology, University of Peradeniya, Sri Lanka

Unknown 1986 1:25,000 PAN Mahaweli Authority, Nawalapitiya,
Sri Lanka

S
at

el
lit

e

LandSat Multispectral 
scanner (MSS) 1972 60m 4 bands 8 bit

USGS EROS (http://www.earthexplorer.usgs.gov)

LandSat Thematic Mapper 
scanner (TM) 1986 30 m 7 bands 8 bit

LandSat Enhanced Thematic 
Mapper scanner (ETM+) 2000 28.5m (MS)

14.5 m 
(PAN)

8 bands 8 bit
LandSat Enhanced Thematic 

Mapper scanner (ETM+) 2003

EO-1 Advanced Land Imager 
(ALI) 2004 10m (PAN) 

30 m (MS) 10 bands 12 bit

IKONOS-2 2005 1 m (PAN)
4 m (MS) 4 bands 11 bit Purchased

Table 1: General characteristics of image data.

Algorithm Reference
Brovey transform (BT) [25,33,36,41-45]

Ehlers fusion (EH) [24,32,34,46]
High-pass filter (HPF) [20,30,47,48]

Modified intensity hue saturation (MIHS) [24,33,34,49]
Principle component analysis (PCA) [25,30,36,44,47,50]

Wavelet Transform (WV) [20,27,35,36,43]

Table 2: Candidate fusion methods and related literature.

http://www.earthexplorer.usgs.gov
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metric is highlighted in gray while the worst value is in bold font. The 
spatial fidelity of fused images was further analyzed using a new metric, 
which is based on Fast Fourier Transform (FFT). We selected few 
fusion scenarios for demonstration purposes. Figure 9 and 10 depict 
exemplar Fourier-magnitude images of the original PAN and three 
fused images which showed best, worst and average spatial and spectral 
improvement with respect to the other quality indicators (i.e., Tables 
5-10). The former represent aerial (1956) - LandSat (1972) fusion while 
the latter pertains to IKONOS (2005) single-sensor fusion. We plotted 
Digital Numbers (DN) of Fourier-magnitude images of original PAN 
images and those of selected fused images. Figure 11 shows scatter plots 
constructed for two multi-sensor data fusion scenarios.

Image segmentation: As a test run, we selected a crucial multi-
sensor fusion scenario (aerial (1956) - LandSat MS (1972)) and applied 
eCognition Developer’s MRS algorithm to the fused image and the 
original LandSat MS image. The resulting image objects and the 
extracted canopy cover are shown in Figure 12.

Discussion
From the point of visual inspections, no single algorithm was able 

to produce superior results by simultaneously preserving spectral and 
spatial properties of the original MS and PAN images. In most cases, 

the High-pass filter algorithm exhibited mediocre fusion results with 
respect to color similarity and spatial improvement. Visual inspections 
are necessary but alone are not sufficient; our contention is that they 
should always be corroborated with objective quality indices.

With respect to band-wise variations of correlation coefficient and 
peak-signal-to-noise ratio (Figure 8), the High-pass filter outperformed 
the other five algorithms in most cases. For example, in case of multi-
platform scenarios (e.g., aerial (1956) - LandSat MSS (1972)), the 
High-pass filter algorithm reported consistently high values for CC and 
PSNR for all the bands and lowest values for SAM and ERGAS. This 
emphasizes the HPF algorithm’s ability to inject spatial structures from 
the high resolution aerial image to the low resolution MS image while 
preserving spectral and radiometric information of the MS image. 
When fusing PAN image of LandSat ETM+ (2003) and the MS image 
of ALI (2004), the Wavelet-PCA fusion algorithm exhibited high CC 
and PSNR values compared the HPF algorithm. In terms of SAM and 
ERGAS, the Wavelet-PCA algorithm was spectrally superior to the HPF 
algorithm. However, in general, all fusing algorithms reported notably 
low CC and PSNR values for NIR1 and NIR2 bands. As stated earlier, 
ALI sensor’s PAN image is restricted to the visible part of the spectrum 
(480nm - 690 nm). This limits the fusion of ALI sensor’s NIR and SWIR 
bands with its 10m resolution PAN image. However, the PAN image of 

Quality metric Addressed issue/domain/expected value Reference

S
pe

ct
ra

l

Correlation coefficient (CC)
•	 Quantifies the spectral correspondence between the original MS and fused images.
•	 domain [-1,1]
•	 As close to 1 as possible

[19,20,36]

Root-mean -square- error (RMSE)
•	 Measures the average amount of spectral distortion in each pixel
•	 domain [0,inf)
•	 Lower value

[22,23,34]

Relative difference to mean (RDM) •	 Measure the changes in the shape of the histogram of fused image compared to original MS image.
•	 domain (-inf, inf)
•	 As close to 0 as possible

[21,35,36]
Relative difference to standard 
deviation (RDS) [21,23,36]

Spectral discrepancy (SD)
•	 Band-wise measure of the spectral quality of the fuse image
•	 domain [0,inf)
•	 As close to 0 as possible

[27,32,51]

Deviation index (DI)
•	 Quantifies the normalized absolute difference of the fused image with the original MS image.
•	 domain [0,inf)
•	 As close to 0 as possible

[32,34,36]

Peak signal-to-noise ratio (PSNR) •	 Indicates the radiometric distortion of the fused image compared to the original MS image.
•	 The highest possible PSNR [36,52]

Entropy (E)
•	 Measures the additional information (spectral and spatial) available in the fused image compared to the 

original MS image.
•	 The smallest possible entropy difference with the original MS image.

[35,36]

Mean structural similarity index 
(MSSIM)

•	 Reveals the spectral and structural similarity between the fused and original MS image by luminance, 
contrast, and structure and applying to a moving window.

•	 domain [0,1]
•	 As close to 0 as possible

[19,24,32]

Spectral angle mapper (SAM)

•	 Pixel-wise comparison of fused image and original MS image. The value 0 indicates low resemblance 
while 1 indicates a high resemblance.

•	 domain [0,1]
•	 As close to 0 as possible

[44,53,54]

Relative dimensionless global error 
in synthesis (ERGAS)

•	 A global indicator that calculates the amount of spectral distortion.
•	 domain [0,inf)
•	 Lower value (< 3)

[22,23,54]

S
pa

tia
l

Canny edge correspondence 
(CEC)

•	 A band-wise comparison of edges detected in the original PAN and the fused image. CES measured in 
percent.

•	 domain [0,100]%
•	 as close to 100 as possible

[24,27]

High-pass(HP) correlation 
coefficient (HP-CC)

•	 Quantifies the correlation between the HP filtered bands of fused image and the HP-filtered PAN image.
•	 domain [-1,1]
•	 as close to 1 as possible

[20,24,55,56]

RMSE of Sobel filtered Pan and 
fused images (Sobel-RMSE)

•	 Measures the average amount of spatial distortion in each pixel
•	 domain [0,inf)
•	 Lower value

[19,34]

Table 3: Summary of quantitative quality metrics.
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Subset 
(1 km x 1 km)

Fusion
Brovey, Ehlers, 

Modified-HIS, HP -filter,
Principle Component, Wavelet-PCA

Spectral
CC/RDM/RDS/S
D/DI/PSNR/
Entropy/MSSIM/
SAM/ERGAS

Spatial
CEE/HP-CC/
Sobel-RMSE

Visual
Spatial/spectral 
distortions

Original MS

Resample

Histogram match

PC
analysis

Histogram 
match

Evaluation

Original PAN

Filter
Canny/HPF/Sobel

Fused MSFirst PC 
image

Figure 3: A schematic of fusion-evaluation workflow.

Original PAN Original MS

Brovey Ehlers HP filter

MIHS PC Wavelet

Figure 4: Original images and fusion results of aerial image (1956) and LandSat MSS image (1972).  Original MS image and fused images are shown as false-color 
composites.
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Original PAN Original MS

BT Ehlers HP filter

MIHS PC Wavelet

Figure 5: Original images and fusion results of aerial image (1986) and LandSat TM image (1992).  Original MS image and fused images are shown as false-color 
composites.

Original PAN Original MS

BT Ehlers HP filter

MIHS PC Wavelet

Figure 6: Original images and fusion results of LandSat ETM+ PAN image (2003) and EO-1 ALI MS image (2004).  Original MS image and fused images are shown 
as false-color composites.
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the LandSat ETM+ (520 nm - 900 nm) expands over the visible and NIR 
bands of the ALI sensor. Thus, the design goal of ETM+ - ALI fusion 
scenario (i.e., LandSat ETM+ (2003) and ALI (2004)) was to inject high 
frequency information from the LandSat ETM+ image to ALI image 
and produce a five-band multispectral image (B,G,R,NIR1,NIR2) 
with 15m spatial resolution. This kind of fusion can be confronted 
mainly due to lack of archived data and cloud cover. We suspect that 
differences in sensor characteristics and radiometric resolutions of 
these two images might have attributed to the poor spectral quality of 
the fused products. When fusing PAN image and MS bands (B2, G, 
and R) of ALI image, Brovey transform algorithm, Ehlers algorithm, 
and High-pass filter algorithm exhibited equal performances for band-
wise metrics and two global indicators (Figure 8). It is interesting note 
that the BT fusion algorithm’s improvement when only three bands are 
involved in fusion process. In case of IKONOS image, HPF algorithm, 
PC algorithm, and Wavelet-PCA, algorithm achieved notably high 
band-wise CC and PSNR values.

With respect to mean scores of the objective spectral quality 
indicators (Tables 5-10), HPF algorithm exhibited best values (see 
values highlighted in gray) for the majority of metrics in aerial-LandSat 

data fusion scenarios (Table 5 and 6) and the single-sensor fusion of 
LandSat ETM+ (Table 7) The Wavelet-PCA algorithm proven to be 
the best candidates in terms of spectral metrics in the multi-sensor 
fusion of LandSat ETM+ and ALI images and the single-sensor fusion 
IKONOS image (Table 9 and 10). The Ehlers fusion emerged as the 
best candidate when applied to ALI image (single-sensor fusion). The 
BT fusion algorithm reported the worst values for spectral metrics for 
the five for the six fusion scenario. This observation further emphasises 
the failure of BT algorithm when more than three bands are involved.

Regarding spatial quality assessment (Tables 5-10), despite the 
superior performances with respect to spectral similarity, wavelet-
PCA algorithm exhibited poor spatial improvement while HPF and 
Ehlers fusion algorithms a showed mediocre spatial fidelity. Unlike 
for spectral quality metrics, the BT fusion algorithm achieved the best 
scores for spatial quality indicators. The poor spatial improvement of 
the wavelet-PCA algorithm is highlighted in both multi-sensor and 
single-sensor data fusion. Comparison of Fourier magnitude images 
of the original PAN and fused images further support the superiority 
and the inferiority of the HP fusion algorithm and the wavelet-PCA 
algorithm, respectively. It should be noted that the BT fusion algorithm 

Original PAN Original MS

BT Ehlers HP filter

MIHS PC Wavelet

Figure 7: Original images and fusion results of single-sensor single-date IKONOS image (2005).  Original MS image and fused images are shown as false-color 
composites.

Fusion
Spectral similarity Spatial similarity

Best Worst Best Worst
Aerial (1956)-LandSat MSS (1972) HP filter Brovey Brovey Wavelet
Aerial (1986)-LandSat TM (1992) HP filter Brovey Ehlers Wavelet

LandSat ETM+ (2000) HP filter Brovey PC Wavelet
LandSat ETM+ (2003)-EO-ALI (2004) HP filter Brovey/MIHS Ehlers Wavelet

EO-ALI (2004) Brovey MIHS Brovey Wavelet
IKONOS (205) HP filter /Ehlers Brovey Ehlers Wavelet

Table 4: Objective evaluation of fused images by experts.
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Aerial (1986) - LandSat TM (1992)
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Figure 8: Band-wise scores for spectral quality metrics (CC and PSNR) and two global metrics (SAM and ERGAS).
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exhibited the best scores for spatial metrics at the expense of sever 
spectral distortion. These observations emphasize the necessity of a 
combined approach (i.e., spectral and spatial fidelity) for benchmarking 
fusion results because the best color preservation of an algorithm can 
be observed even if no pan sharpening is performed; on the other 
hand, a fusion algorithm can achieve the best spatial improvement 
while producing results with the worst color preservation. Overall, 
scores reported for our spectral budget clearly demonstrated the 
superiority of spatial-domain methods (i.e., HPF algorithm and Ehlers 

fusion algorithm) compared to popular spectral substitution fusion 
techniques such as Brovey transform, MIHS, and PC.

We emphasized the importance of spatial information in the 
GEOBIA framework because the image segmentation process is 
not solely driven on per-pixel spectra but also integrates spatial 
and contextual characteristics when producing non-overlapping 
homogeneous image objects. The quality of image object candidates 
affects subsequent classification workflows. Figure 12 demonstrates 

Fusion 
algorithm

Spectral metric Spatial metric

CC RMSE RDM RDS SD DI PSNR ENT MSSIM ERGAS SAM Canny edge HPF-CC Sobel-RMSE
HP Filter 0.814 2.04 0.031 -0.094 1.549 0.073 42.848 0.208 0.999 2.349 1.736 84.187 0.755 13.039
Wavelet 0.739 2.949 0.011 0.138 1.558 0.068 40.999 0.128 0.995 2.987 2.274 79.771 0.642 12.304
Ehlers 0.622 2.733 0.003 -0.095 2.073 0.095 40.185 0.635 0.997 3.144 2.11 83.815 0.73 13.052

PC 0.503 3.33 0.013 -0.104 2.657 0.109 39.577 0.326 0.996 3.427 2.79 87.246 0.808 12.579
MIHS 0.487 3.256 0.014 -0.087 2.521 0.115 38.727 0.202 0.996 3.712 3.012 83.891 0.754 12.914

Brovey 0.38 3.584 0.013 -0.099 2.849 0.126 37.999 0.244 0.995 3.971 2.775 94.696 0.989 8.571

Table 5: Reported scores of spectral and spatial quality metrics for the fusion of aerial image (1956) and LandSat MSS image (1972).

Fusion 
Algorithm

Spectral metric Spatial metric
CC RMSE RDM RDS SD DI PSNR ENT MSSIM ERGAS SAM Canny edge HPF-CC Sobel-RMSE

HP filter 0.691 4.69 -0.011 0.3 2.557 0.064 35.572 0.154 0.993 2.844 2.525 84.837 0.792 22.213
Wavelet 0.609 5.063 0.006 0.113 3.146 0.076 39.112 0.18 0.992 3.123 2.719 80.719 0.624 21.469
MIHS 0.486 5.862 -0.009 0.213 3.751 0.093 34.111 0.083 0.989 3.734 3.091 87.261 0.762 22.065
Ehlers 0.371 7.504 -0.007 0.564 3.916 0.097 31.176 0.566 0.984 4.869 2.884 83.717 0.76 22.1

PC 0.37 8.593 -0.01 0.853 4.268 0.106 30.404 0.035 0.979 5.516 4.218 88.291 0.888 21.42
Brovey 0.327 8.277 3.306 -0.013 0.704 4.376 0.104 30.732 0.036 3.924 3.184 94.844 0.989 14.934

Table 6: Reported scores of spectral and spatial quality metrics for the fusion of aerial image (1986) and LandSat TM image (1992).

Fusion 
Algorithm

Spectral metric Spatial metric
CC RMSE RDM RDS SD DI PSNR ENT MSSIM ERGAS SAM Canny edge HPF-CC Sobel-RMSE

HP filter 0.912 2.295 0.004 0.003 1.316 0.025 42.056 0.212 0.998 2.328 1.072 84.496 0.923 1.191
Wavelet 0.864 3.377 0.008 0.119 1.334 0.025 38.92 0.125 0.998 3.647 0.603 79 0.598 3.111
Ehlers 0.656 5.579 0.006 0.316 2.36 0.045 32.644 0.167 0.995 6.001 1.433 84.948 0.919 1.43

PC 0.616 5.489 0.008 0.31 2.835 0.054 33.937 0.34 0.993 5.757 2.177 86.251 0.935 0.968
MIHS 0.608 6.653 0.009 0.435 2.728 0.052 32.644 0.167 0.992 7.411 2.119 84.234 0.912 1.317

Brovey 0.47 5.787 0.009 0.2 3.422 0.065 33.057 1.14 0.992 5.805 2.458 87.383 0.923 1.491

Table 7: Reported scores of spectral and spatial quality metrics for the fusion of PAN and MS bands of the LandSat ETM+ image (2000).

Fusion 
Algorithm

Spectral Metric Spatial Metric
CC RMSE RDM RDS SD DI PSNR ENT MSSIM ERGAS SAM Canny edge HPF-CC Sobel-RMSE

Wavelet 0.902 233.861 -0.001 0.079 116.729 0.039 25.068 1.595 0.862 3.630 1.702 78.018 0.568 242.994
HP filter 0.859 247.971 -0.002 -0.019 171.730 0.053 23.482 1.597 0.721 4.165 1.038 82.477 0.912 172.918
Ehlers 0.761 297.307 -0.005 -0.021 217.913 0.071 21.050 1.598 0.554 5.189 1.182 85.837 0.917 211.651

PC 0.737 350.045 0.003 -0.022 273.701 0.080 21.218 1.603 0.601 5.587 1.537 88.763 0.922 162.310
MIHS 0.622 356.016 0.000 -0.010 269.346 0.094 18.933 1.597 0.495 6.797 1.830 86.992 0.891 210.725

Brovey 0.524 320.422 -0.001 -0.020 243.866 0.090 18.856 3.272 0.517 5.995 1.347 76.487 0.604 3.474

Table 8: Reported scores of spectral and spatial quality metrics for the fusion of the PAN image of LandSat ETM+ image (2003) and the MS image of EO-1 ALI image 
(2004).

Fusion 
Algorithm

Spectral Metric Spatial Metric
CC RMSE RDM RDS SD DI PSNR ENT MSSIM ERGAS SAM Canny edge HPF-CC Sobel-RMSE

Ehlers 0.913 56.499 -0.002 -0.018 38.394 0.035 32.025 3.259 0.828 1.392 0.991 90.645 0.918 30.187
Brovey 0.888 65.119 -0.002 -0.002 43.530 0.039 30.825 2.587 0.795 1.609 1.260 93.871 0.961 34.835
HP filter 0.888 65.473 -0.007 -0.031 44.609 0.040 30.838 2.699 0.816 1.625 1.062 93.059 0.975 32.285

PC 0.824 88.928 -0.008 -0.001 60.775 0.054 28.832 2.623 0.688 2.272 1.820 83.135 0.769 40.072
Wavelet 0.784 106.411 -0.008 0.052 67.196 0.062 27.687 2.628 0.629 2.810 2.466 81.107 0.328 81.044
MIHS 0.777 102.401 -0.009 0.004 69.801 0.062 27.799 2.870 0.627 2.660 2.254 83.026 0.722 43.684

Table 9: Reported scores of spectral and spatial quality metrics for the fusion of PAN image and visible bands of EO-1 ALI image (2004).
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Fusion 
Algorithm

Spectral Metric Spatial Metric
CC RMSE RDM RDS SD DI PSNR ENT MSSIM ERGAS SAM Canny edge HPF-CC Sobel-RMSE

Wavelet 0.891 28.886 -0.007 0.001 21.182 0.077 39.578 1.999 0.916 2.601 2.282 77.619 0.802 27.576
HP filter 0.867 30.929 -0.008 -0.005 22.398 0.083 38.456 2.001 0.890 2.839 2.734 87.912 0.970 22.326

PC 0.851 34.584 -0.007 -0.005 25.177 0.090 38.700 2.007 0.870 3.105 3.120 82.981 0.791 23.166
Ehlers 0.751 36.516 -0.008 -0.001 26.268 0.099 36.157 2.053 0.855 3.281 3.007 83.433 0.924 20.246
MIHS 0.704 40.565 -0.007 -0.007 29.036 0.108 35.438 1.995 0.831 3.615 2.307 83.295 0.890 22.303

Brovey 0.578 41.941 -0.007 -0.002 31.559 0.125 34.143 2.081 0.847 4.136 2.859 90.787 0.959 23.095

Table 10: Reported scores of spectral and spatial quality metrics for the fusion of PAN image and MS bands of IKONOS image (2005).

(a) (b)

(c) (d)

Figure 9: Fourier magnitude images produced from:  (a) the 1956 aerial image and three other selected fused images; (b) Brovey transform, (c) Wavelet-PCA, and 
(d) HP filter.

(a) (b)

(c) (d)

Figure 10: Fourier magnitude images produced from: (a) IKONOS PAN image and three other selected fused images; (b) Brovey transform, (c) Wavelet-PCA, and 
(d) HP filter.
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Aerial (1956) - LandSat MSS (1972) fusion Aerial (1986) - LandSat TM (1992) fusion

Brovey transform fusion (R2 = 0.988) Brovey transform fusion (R2 = 0.987)

High-pass filter  fusion (R2 = 0.935) High-pass filter  fusion (R2 = 0.976)

Wavelet-PCA fusion (R2 = 0.483) Wavelet-PCA fusion (R2 = 0.418)
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Figure 11: Scatter plots constructed based on Fourier magnitude images of the original PAN images and their corresponding fused images. Plots are given only for 
selected fusion algorithms focusing on two multi-sensor fusion scenarios.
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the improvement of the quality of image objects when high frequency 
information of the aerial images is injected to the low resolution 
LandSat MSS image. Our understanding is that the fusions of two aerial 
images (1956 and 1986) with LandSat MSS (1972) and LandSat TM 
(1986) are of high value due to several reasons. The forest dieback was 
first documented in late 1970s, thus the fusion of aerial (1956) image 
and the LandSat MSS (1972) produces a high resolution MS image 
(15m) representing pre-dieback or early- stage dieback conditions 
of the HPNP. We could have spatially improved the LandSat MSS 
image to 10m resolution instead of 15m because the resolution ratio 
between the PAN image and MS image can reach up to 1:6. The second 
fusion scenario provides a 7m resolution MS image capturing a post-
dieback condition of the park. The most important reason is that we 
used archived data from public domains and produced useful spatially 
enhanced images for pre-IKONOS era (i.e., before 1999) time periods.

Fusion of two images with 20 year time difference might be 
questionable because in single-sensor multi-date and multi-sensor 
multi-date data fusion, near- contemporaneous images are desired. 
Due to the scarcity of decadal aerial surveys in Sri Lanka, the 1956 
aerial image emerged as the best candidate to spatially enhance 
the 1972 LandSat MSS image. We also explored other high-spatial 

resolution data sources as an alternative to the 1956 aerial image. 
Especially KH-series declassified military intelligence imagery that 
is now available in public domains. KH-7 Surveillance System and 
the KH-9 Mapping System declassified satellite imagery consists of 
approximately photographic 50,000 images that were taken from 1963 
to1980 of various locations around the world. Most of these images are 
found to be near-contemporaneous with the 1970 LandSat MSS data. 
However, we had to disqualify these images due to the heavy cloud 
cover over the HPNP.

Conclusion
We applied six fusion algorithms to single-sensor single-date and 

multi-senor multi–date images taken over the Horton Plains national 
park. Benchmarking of fusion algorithms was conducted visually and 
quantitatively, the latter based on eleven spectral and four spatial 
indices. From our multidimensional quality assessment, there is no 
fusion method that exhibited superior performances simultaneously 
for color preservation and spatial improvement. The HPF emerged 
as the best performing algorithm for single-sensor single-date and 
multi-sensor multi-date data fusion. Fusing high-spatial resolution 
panchromatic and high-spectral resolution multispectral images with 

(a)

(b) (c)

Candidate segments of the 
original MS image
(in red)

Candidate segments of the 
fused image
(in yellow)

Figure 12: The quality of image objects candidates derived from the original LandSat MSS image and the fused image (i.e., after injecting spatial structures from the 
high resolution aerial image using High-pass filter fusion algorithm). (a) Image objects of the original and the fused images draped over the high resolution aerial image, 
(b) Classified image objects as forest (in green), and (c) After applying advanced object fusion algorithm to merge forest’ objects.
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complementary characteristics improves the quality of image objects 
and better delineates complex land cover types. Our findings shed 
new light on how multiple earth observation data with complimentary 
characteristics can be transformed into useful products in support of 
long-term ecosystem motoring applications.
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