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Sites in Saccharomyces cerevisiae
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ABSTRACT

N6-methyladenosine (m6A) plays critical roles in a broad set of biological processes. Knowledge about the precise 
location of m6A site in the transcriptome is vital for deciphering its biological functions. Although experimental 
techniques have made substantial contributions to identify m6A methylations, they are still labor intensive, costly 
and time consuming. As good complements to experimental methods, in the past few years, a series of computational 
approaches have been proposed to identify m6A sites in Saccharomyces cerevisiae. In order to facilitate researchers to 
select appropriate methods for identifying m6A sites, it is necessary to give a comprehensive review and comparison on 
existing computational methods. In this review, we summarized the current progresses in computational prediction of 
m6A sites and also assessed the performance of computational methods for identifying m6A sites on an independent 
dataset. Finally, challenges and future directions of computationally identifying m6A sites were presented as well. 
Taken together, we anticipate that this review will provide an important guide for future computational analysis of 
m6A and other RNA modifications.

Keywords: Post transcription modification; N6-methyladenosine; Epitranscriptome; Machine learning method; 
5-step rules

INTRODUCTION
Among the ~150 kinds of known RNA modifications, the N6-
methyladenosine (m6A) is the most prevalent internal mRNA/
lncRNA modifications, which occurs on the sixth nitrogen atom 
of adenine. As a reversible and dynamic post-transcriptional 
modification, the formation of m6A is installed by a multicomponent 
methyltransferase complex including METTL3, METTL14 and 
WTAP, while its demethylation is regulated by demethylases 
FTO and ALKBH5. The biological functions of dynamic m6A 
modification is regulated by m6A readers, such as heterogeneous 
nuclear ribonucleoprotein C (HNRNPC), YTH Domain Family 
proteins 1, 2 and 3 (YTHDF1, YTHDF2, YTHDF3) and YTHDC1, 
etc. [1,2-4].

Since discovered in 1970s, m6A has been observed in all three 
kingdoms of life. With the intensive researches on m6A methylation 
in recent years, its functions have been uncovered gradually. It has 
been found that m6A is associated with a broad set of fundamental 
cellular processes, such as RNA localization and degradation, RNA 

splicing, circadian rhythm, cell differentiation and reprogramming, 
immune tolerance and even the occurrence of diseases. However, 
few of them are currently understood in mechanistic detail. 
Identifying the precise location of m6A site in transcriptomes will 
be of a great help to investigate its biological mechanisms and 
functions.

With the development of next-generation sequencing technology, 
the MeRIP-Seq and m6A-seq high-throughput methods have 
been developed to identify m6A sites in Saccharomyces cerevisiae, 
Homo sapiens, and Mus musculus. However, the resolution of these 
techniques is low and couldn’t identify the exact methylated 
adenosines. Recently, the miCLIP technique was proposed, which 
provided the single-nucleotide resolution m6A profile of the 
human transcriptome. Based on these experimental data, several 
informative databases related with m6A modifications have been 
built. Taken together, these experiments promote the progress 
of researches on m6A modifications. However, experimental 
techniques are still labor-intensive and expensive for transcriptome-
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wide detection of m6A. Therefore, it is an urgent task to develop 
effective and low-cost approaches to automatically identify m6A 
sites. As excellent complements to experimental techniques, 
computational methods are in high demand to accurately detect 
m6A sites.

MATERIALS AND METHODS

In 2013, Schwartz proposed the first computational model to 
predict the m6A site in the S. cerevisiae transcriptome, whose 
features include relative position in gene, nucleotide composition 
and predicted secondary structures. Although no public web server 
or software package was provided for this method, Schwartz’s 
pioneer work provides a new strategy for identifying m6A site. 
Since then, the scientific community witnessed an unprecedented 
amount of studies considering the application of machine learning 
method to identify m6A sites. For example, a series of machine 
learning based methods, such as m6Apred, iRNA-Methyl, SRAMP, 
pRNAm-PC, RAM-ESVM, RAM-NPPS and RNA-MethylPred have 
been proposed. All these prediction methods were developed in 
principle by following the guidelines of the Chou’s 5-step rule [5] 
as done in a series of powerful predictors developed recently for 
genome or proteome analyses. 

Accordingly, these methods also share the advantages: (1) clearer in 
logic development, (2) more transparent in operation, and (3) more 
useful in practical application. 

To provide the readership with a clear landscape about the recent 
developments in this important area, in this comprehensive review 
we are to elaborate their details in observing the Chou’s 5-step rule 
[5]: (1) how to construct or select a valid benchmark dataset to train 
and test the predictor; (2) how to formulate the biological sequence 
samples with an effective mathematical expression that can truly 
reflect their intrinsic correlation with the target to be predicted; 
(3) how to introduce or develop a powerful algorithm (or engine) 
to operate the prediction; (4) how to properly perform cross-
validation tests to objectively evaluate the anticipated accuracy of 
the predictor; (5) how to establish a user-friendly web-server for the 
predictor that is accessible to the public. Moreover, to facilitate users 
to select appropriate method according to their need, a comparison 
of existing methods in identifying m6A sites is to be performed 
based on an independent dataset. Finally, the challenges and future 
perspectives for identifying m6A sites are to be discussed.

Benchmark dataset for predicting m6

Constructing a valid and reliable benchmark dataset is the critical 
step to train a computational model with high effectiveness [6,7]. 
In literature, the benchmark dataset usually consists of a training 
dataset and a testing dataset: the former is constructed for the 
purpose of training a proposed model, while the latter for the 

purpose of testing it. As pointed out by a comprehensive review 
[8], however, there is no need to separate a benchmark dataset into 
a training dataset and a testing dataset for validating a prediction 
method if it is tested by the jackknife or subsampling (K-fold) cross-
validation because the outcome thus obtained is actually from a 
combination of many different independent dataset tests. 

For investigating the m6A sites, the benchmark datasets were 
constructed as follows. The sequence segment surrounding the m6A 
site contains the underlying discrimination information, whose 
size can be determined with the aid of sliding window scheme. The 
window length is usually set to 2n+1, whose central element is the 
experimentally confirmed m6A site, with n flanking nucleotides 
on both sides of the methylated adenosine. However, there is no 
uniform standard to set the window size. The determination of n is 
always associated with features extraction, prediction method and 
cross-validation performance.

In 2015, the first publicly available benchmark dataset (called 
Ē1 here) for the prediction of m6A sites was built by Chen. The 
positive samples in dataset Ē1 are 832 m6A sites with distances to 
the detected m6A-seq peaks less than 10 bp, which were extracted 
from the 1,307 experimentally confirmed m6A sites [53 
negative samples in dataset Ē

1
 are the 832 non-m6A sites randomly 

selected from the 33,280 non-methylated adenines. Each sample in 
the dataset Ē1 is 21-nt long with the m6A sites or non-m6A site in 
the center.

In some cases, the m6A site locates at the beginning or end of the 
sequence, which results in that the extracted sequence fragments 
size is shorter than the given window size. Two strategies are often 
used to generate fixed window length. The first one is to fill the 
blank by using the dummy ‘X’ nucleotide that don’t represent any 
real nucleotide. The second one is to fill the blank using the mirror 
image method. If the missing nucleotides locate at the beginning 
(i.e. upstream of the m6A site), they will be filled by using their 
mirror images locate at downstream of the m6A site, and vice versa 
(Figure 1). The second approach has been used to construct the 
benchmark dataset for the prediction of m6A sites in S. cerevisiae. 

In 2016, Chen built another benchmark dataset (called Ē
2
 here) 

using the mirror image method, which includes 1,307 m6A site 
containing sequences (positive samples) and the equal number of 
non-m6A containing sequences (negative samples). In dataset Ē

2
, 

all the experimentally confirmed m6A sites in S. cerevisiae were 
included. The sequences in this dataset are 51-nt long with the 
sequence similarity less than 85%, with the m6A site or non-m6A site 
in the center. Since it has been built, nearly all the computational 
models for identifying m6 S. cerevisiae were trained and 
tested on the dataset Ē

2
 [54].

Figure 1:  A schematic illustration showing the mirror image for (a) upstream (b) downstream missing nucleotides, respectively. The real RNA segment is 
colored in blue and its mirror image is colored in red. The methylated A is highlighted in green.
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Formulation of rna samples

The 2nd step of the 5-step rules [5] is about the formulation 
of biological samples. With the explosive growth of biological 
sequences in the post-genomic era, one of the most important 
but also most difficult problems in computational biology is 
how to express a biological sequence with a discrete model or a 
vector, yet still keep considerable sequence-order information or 
key pattern characteristic. This is because all the existing machine-
learning algorithms (such as “Covariance Discriminant” or “CD” 
algorithm [9,10], “Nearest Neighbor” or “NN” algorithm [11,12], 
“Support Vector Machine” or “SVM” algorithm [13,14], and 
“Random Forest” or “RF” algorithm [15,16]) can only handle 
vectors as elaborated in a comprehensive review [17]. However, 
a vector defined in a discrete model may completely lose all the 
sequence-pattern information.  To avoid completely losing the 
sequence-pattern information for proteins, the pseudo amino acid 
composition [18] or PseAAC [19] was proposed. Ever since the 
concept of Chou’s PseAAC was proposed, it has been widely used 
in nearly all the areas of computational proteomics (see example, 
[20-45] as well as a long list of references cited in [46]). 

Because it has been widely and increasingly used, four powerful 
open access soft-wares, called ‘PseAAC’ [47], ‘PseAAC-Builder’ 
[48], ‘propy’ [49], and ‘PseAAC-General’ [50], were established: 
the former three are for generating various modes of Chou’s 
special PseAAC [51]; while the 4th one for those of Chou’s 
general PseAAC [5], including not only all the special modes 
of feature vectors for proteins but also the higher level feature 
vectors such as “Functional Domain” mode (see  equations..9-10 
of [5]), “Gene Ontology” mode (see Equations 11-12 of [5]), and 
“Sequential Evolution” or “PSSM” mode (see equations13-14 of 
[5]). Encouraged by the successes of using PseAAC to deal with 
protein/peptide sequences, the idea of PseAAC was extended to 
PseKNC (Pseudo K-tuple Nucleotide Composition) to generate 
various feature vectors for DNA/RNA sequences [52] that have 
proved very successful as well [25,41,43,44,53-60]. Particularly, 
recently a very powerful web-server called ‘Pse-in-One’ [61] and its 
updated version ‘Pse-in-One2.0’ [62] have been established that can 
be used to generate any desired feature vectors for protein/peptide 
and DNA/RNA sequences according to the users’ need or their 
own definition.” According to the concept of pseudo components, 
any RNA sequence sample can be formulated as [53].

[ ]1 2               u Zφ φ φ φ= TR   (1)

where

( )

4

1 1

4
4

1 1

        (1 4 )             

4 4    k

k

k
ku

i ji j
u

k ku

i ji j

f u
f w

w
u

f w

λ

λ

θ
φ

θ
λ

θ

= =

−

= =

 ≤ ≤
+= 

 < ≤ + +

∑ ∑

∑ ∑

           (2)

In Eq.2, f
u
 (u = 1,2,..., 4k) is the normalized occurrence frequency of 

the u-th non-overlapping k-tuple nucleotide in the RNA sequence. 
λ is the number of the total pseudo components used to reflect the 
long-range or global sequence effect, and w is the weight factor. θ 
is the j-th tier correlation factor that reflects the sequence order 
correlation between all the j-th most contiguous k-tuple nucleotide 
along a L-nt long RNA sequence as formulated by
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( ) ( ) 2

, 1 1 1 1
1

1C  R R R R R Ri i j g i i i k g i j i j i j k
g

P P
µ

µ+ + + − + + + + + −
=

 = … − … ∑      (4)

where µ is the number of RNA physicochemical properties 
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at position i + j. The details 

about PseKNC can be found in our recent review article [53].

Algorithm or operation engine

The 3rd step of the 5-step rules [5] is about the operation engine. The 
two commonly used machine learning algorithms for identifying 
m6A sites are support vector machine (SVM) and random forest 
(RF), which were briefly introduced as following.

RESULTS AND DISCUSSION
Support vector machine (SVM)

SVM is a powerful and popular method for pattern recognition, 
which has been widely used in the realm of bioinformatics 
especially very effectively in a series of recent genome analyses 
(see example [63-65]). Its basic idea is to transform the input data 
into a high dimensional feature space and then determine the 
optimal separating hyperplane. Owing to its effectiveness and 
speed in training process, the radial basis kernel function (RBF) of 
SVM was often used to obtain the classification hyperplane. The 
regularization parameter C and kernel parameter γ of the SVM 
operation engine can be optimized in the following ranges [2-5, 215] 
and [2-15, 2-5] with the steps of 2 and 2-1, respectively. For a brief 

more details about SVM, see a monograph [68].

Random forest (RF)

RF is an ensemble of a large number of decision trees. Each tree 
in the ensemble is trained on a subset of training instances and 
gives a classification result. The three parameters of RF, namely 
the number of trees, the number of features randomly selected, 
and the minimum number of samples required to split an internal 
node (nsplit) can be determined by using the grid search scheme. 
The predictive results of RF are based on the ensemble of those 
decision trees. Since proposed by Breiman in 2001 [69], owing to 
its advantages in dealing with high-dimensional data, RF has been 
used in many areas of bioinformatics (see example, [15,16,56,70-83]).

Performance evaluation

The 4th guideline of the 5-step rules [5] is about how to validate the 
proposed model. To address this, two issues are need to considered. 
One is what kind of metrics should be used to measure the scores, 
and the other is what test methods should be adopted to count the 
scores.

A set of intuitive metrics

The performance of the computational methods are usually 
evaluated using the following four metrics [84]: (1) overall accuracy 
or Acc, (2) Mathew’s correlation coefficient or MCC, (3) sensitivity 
or Sn, and (4) specificity or Sp. However, the conventional metrics 
copied from math books are hard to be understood by most 
experimental scientists due to lacking intuitiveness; especially for 
the MCC, which is very important to indicate the stability of a 
predictor. Fortunately, using the symbols introduced by Chou 
[85] in studying signal peptide cleavage sites, a set of four intuitive

formulation of SVM and how it works, see the papers [66, 67]. For 
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metrics were derived [14,86], as given below
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where N+ represents the total number of positive samples 
investigated, while N+

−  is the number of positive samples incorrectly 
predicted to be of negative one; N−  the total number of negative 
samples investigated, while N−

+  the number of the negative samples 
incorrectly predicted to be of positive one. The set of intuitive 
metrics have been concurred and applauded by a series of recent 
publications (see example, [14,16,57-59,74,82,83,87-100,101-114]). 
It is instructive point out, however, either the conventional metrics 
[84] taken from math books or the intuitive metrics of Equation 5 
are valid only for single label systems (where each of the constituent 
samples belong to one, and only one, attribute or class); for the 
multi-label systems (where a sample may simultaneously belong to 
several different attributes or classes) whose existence has become 
more frequent in system biology [6,7,29, 1115-134], system medicine 
[135,136] and biomedicine [78,137], a completely different set of 
metrics as defined in [138] is absolutely needed.

Jackknife test

In statistical prediction, the following three cross-validation 
methods are often used to evaluate the performance of a predictor: 
independent dataset test, subsampling (or K-fold cross-validation) 
test, and jackknife test [139]. Among them, however, the jackknife 
test was deemed the least arbitrary that can always yield a unique 
result for a given benchmark dataset, as elucidated in [5] and 
demonstrated by Equations 28-32 therein. Therefore, the jackknife 
test has been increasingly recognized and widely adopted by 
investigators to test the power of various prediction methods (see 

Methods Sn (%) Sp (%) Acc (%) MCC

iRNA-Methyl 19.25 80.75 50 0

RAM-ESVM 18.83 68.62 43.72 -0.14

RNA-MethylPred 27.2 74.06 50.63 0.01

RAM-NPPS 28.87 71.55 50.21 0

DeepM6APred 48.54 70.29 59.41 0.19

OPEN ACCESS Freely available online

example, [140-146]). In view of this, the jackknife test was also adopted 
to evaluate the computational methods in identifying m6A sites.

Web servers for detecting m6

The last but not least important step of the Chou’s 5-step rules [5] 
147] and 

demonstrated in a series of recent publications (see example [55, 
57-59,81,89,97,102,104,12 21-127,135, 148-160]), user-friendly  
and publicly accessible web-servers represent the future direction 
for developing practically more useful prediction methods and 
computational tools. Actually, many practically useful web-
servers have significantly increased the impacts of bioinformatics 
on medical science [17], driving medicinal chemistry into an 
unprecedented revolution [46].

Computational methods for detecting m6

Over the past several years, nine different computational methods 
were proposed to identify m6 S. cerevisiae transcriptome. 
For clarity, their names and web server addresses (if available) are 
listed in Table 1 according to the chronological order. Show in 
Figure 2 is the corresponding flowchart. 

Using graphic approaches to study biological and medical systems 
can provide an intuitive vision and useful insights for helping 
analyze complicated relations therein, as indicated by many previous 
studies on a series of important biological topics, (see example 
[161-174], particularly in enzyme kinetics and protein folding rates 
[169, 175-177] as well as low-frequency internal motion [178,183].

Table 1: List of computational methods for identifying m6A sites in S. 
cerevisiae.

Figure 2: The general framework of computational method for identifying m6A sites. The widely used feature extraction strategies and machine learning 
classifiers were shown in this figure.

is about the web-server establishment. As pointed out in [

A  sites

A sites in the 

A sites
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Below, we are to make a comparison among the nine different 
prediction methods via their flowcharts as well. 

m6Apred

Inspired by Schwartz’s pioneer work, a support vector machine 
(SVM) based method called m6Apred was proposed by Chen, 
which encodes RNA sequences by using both accumulated 
nucleotide frequency and nucleotide chemical properties (i.e. 
chemical structure, chemical binding and chemical functionality). 

Compared with the classic nucleotide composition, the accumulated 
nucleotide frequency includes not only the nucleotide frequency 
information, but also the distribution of each nucleotide in the 
RNA sequence. The three kinds of nucleotide chemical properties 
have different impacts on RNA’s low-frequency internal motion 
and its biological function. 

Accordingly, each nucleotide in the sequence was represented by a 
4-dimenstional vector, in which the first element is the accumulated 
nucleotide frequency and the remaining three elements correspond 
to the nucleotide chemical properties. For the sequence with a 
length of L (where L=21), it can be represented by a 4L-dimenstional 
vector and used as the input of SVM. The proposed m6Apred 
obtained a satisfactory performance for identifying m6A site in the
S. cerevisiae transcriptome based on dataset Ē

1
.

iRNA-Methyl

It was found that the formation of m6A methylation is affected 
by RNA secondary structure that is highly related with the 
physicochemical properties of dinucleotide. In view of this, a 
predictor called “iRNA-Methyl” was proposed by formulating RNA 
sequences with the pseudo nucleotide composition (PseKNC). By 
using PseDNC (i.e. k=2 in Equation 2), three physicochemical 
properties, namely enthalpy, entropy, and free energy that can 
quantify the RNA secondary structures were used to calculate the 
long-range sequence order effects using the following formula:
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where f
u
 (u = 1,2,..., 16) is the normalized occurrence frequency of 

the -th non-overlapping dinucleotide in the RNA sequence, and
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where θj is called the j-tier correlation factor that reflects the
sequence order correlation between all the j-th most contiguous 
dinucleotide, the coupling factor Ci,i+j is given by
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where P
g
(D

i
)  (g=1, 2, 3) is the normalized value of the above mentioned 

three RNA physicochemical properties for the i-th dinucleotide D
i
. 

By using the 10-fold cross validation test, the optimal values for 
the parameters λ and w of PseKNC were obtained (i.e. λ=6 and 
w=0.9). Accordingly, the samples in dataset Ē2 were transferred into 
a 22-dimensional vector in the iRNA-Methyl method. It was found 
that iRNA-Methyl obtained an accuracy of 65.59% for identifying 
m6A sites in the rigorous jackknife test. For the convenience of 
experimental scientists, a web-server for iRNA-Methyl has been 
established at http://lin-group.cn/server/iRNA-Methyl. 

pRNAm-PC

In 2016, in order to improve the accuracy of m6A site identification, 
Liu proposed the pRNAm-PC method, in which the RNA 
sequences in dataset Ē

2
 were encoded by using a vector, whose 

components were derived from a physical-chemical matrix via the 
auto-covariance and cross-covariance transformations [55]. 

Based on the dinucleotide physicochemical properties, a 10×50 
dimensional physicochemical property matrix (PC) was defined as 
following,
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where P
j(NiNi+1) is the j-th (j=1, 2, ..., 10) physicochemical properties 

value for the dinucleotide NiNi+1  (namely AA, AC, AG, AU, CA, 
..., or UU) in the RNA sequence. In the pRNAm-PC method, 10 
dinucleotide physicochemical properties (i.e. P1: rise, P2: roll, P3: 
shift, P4: slide, P5: tilt, P6: twist, P7: enthalpy, P8: entropy, P9: stack 
energy, and P10: free energy) were used.

In order to reflect the correlation of the same and different 
physicochemical property between two subsequences separated 
by λ dinucleotides, the auto-covariance (AC) and cross-covariance 
(CC) method were used to transform the physicochemical property
matrix into a length-fixed feature vector and were defined as
following.
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By preliminary tests, they found that the best value for λ is 4. 
Therefore, the RNA sequences in dataset S2

 were encoded by a 
400-dimensional vector, of which the 40 elements were deduced
from the auto-covariance and the 360 elements from the cross-
covariance. Based on this kind of feature, the pRNAm-PC was built
and yielded an accuracy of 69.74% for identifying the m6A sites
in dataset S

2
 in the jackknife test, which is ~5% higher than that

of iRNA-Methyl. However, the feature dimension of pRNAm-PC
was nearly 26 times larger than that of iRNA-Methyl. Moreover,
the contributions and biological meanings of the above mentioned
10 physicochemical properties for identifying m6A sites were not
described at all.

SRAMP

Subsequently, by combining multiple features, Zhou and his 
colleagues established a random forest based computational 
predictor, called SRAMP, which is available at http://www.cuilab. 
cn/sramp/. In order to capture more sequence-derived features, 
the positional nucleotide sequence pattern, K-nearest neighbor 
information, the position independent nucleotide pair spectrum, 
and the predicted RNA secondary structure were used to encode 
the RNA sequences. 

For the positional nucleotide sequence pattern, the nucleotide 
(A,C,G or U) at each position were represented by the binary 
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vector of (1,0,0,0), (0,1,0,0), (0,0,1,0), or (0,0,0,1). For a 2n+1 long 
sequence segment, a 4×(2n+1) dimensional vector can be obtained.

In order to measure the extent of how much the flanking window of 
one query sample resembles those of other m6A sites, the K-nearest 
neighbor information was introduced. Firstly, the flanking window 
of the query sample was compared with all samples in the training 
dataset and obtained a pair-wise similarity score,
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where q
i
 and r

i
 are the nucleotides at the i-th position of the flanking 

windows in the query sample and the training samples. 2n + 1 is 
the window size. The NUC44 is a common nucleotide similarity 
scoring matrix. And then, the fraction of positive samples in the 
top K most similar reference samples was taken as the KNN feature. 
In SRAMP, 30 K values were used (i.e., K=50, 100, 150, …, 1500).

The sequence context was also reflected by calculating the 
frequencies of all possible d-spaced nucleotide pairs, which is 
defined as

( )( )
2 1

i
i

C npFrequency np
n d

=
− −

              (13)

where C(np
i
) is the number of np

i
 inside a flanking window with a 

size of 2n, d is the space between two nucleotides, and ranged from 
0 to 3.

As indicated in their work, the hairpin loop, multiple loop, interior 
loop, paired and bulged loop from the RNA secondary structure 
were also used to represent RNA sequences, which were encoded 
as the binary vectors, namely (1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), 
(0,0,0,1,0), (0,0,0,0,1) and (0,0,0,0,0), respectively. Accordingly, in 
the structure space, a flanking window with a size of 2n will be 
converted into a 2n×5-dimensional vector.

For each kind of these features, a random forest classifier was built. 
The final prediction result was the combination of them by using 
the weighted summing scheme. As indicated by, SRAMP yielded 
comparable accuracy for identifying m6A sites in the S. cerevisiae 
transcriptome to that of iRNA-Methyl. As a big plus, SRAMP can 
not only identify m6A sites in S. cerevisiae, but also much more 
effective for identifying mammalian m6A sites.

M6A-HPCS

Later on, with the aim of finding out which physicochemical 
properties making great contributions for identifying m6A sites, 
Zhang proposed a heuristic nucleotide physicochemical property 
selection algorithm, called M6A-HPCS, to identify m6A sites in the 
S. cerevisiae transcriptome [99]. The M6A-HPCS method is based on 
the iRNA-Methyl and pRNAm-PC methods. However, rather than 
directly using the physicochemical properties, the relative gain and 
direct gain methods were used to measure the significance of each 
of the 23 dinucleotide physicochemical properties for identifying 
the m6A sites. And then, a heuristic algorithm is employed to select 
the optimal physicochemical properties for the PseKNC (used in 
iRNA-Methyl) and auto-covariance and cross-covariance (used in 
pRNAm-PC) encoding schemes, respectively.

For the PseKNC and auto-covariance and cross-covariance encoding 
scheme, 5 and 13 out of the 23 dinucleotide physicochemical 
properties were selected out as their optimal candidates to represent 
the RNA sequences in dataset S

2
, respectively. In the rigorous 

jackknife test, the accuracies of 67.33% and 72.38% were obtained 
for identifying m6A sites for both encoding schemes, respectively. 
Although its predictive accuracy is higher than those of iRNA-
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Methyl and pRNAm-PC, the shortcomings for M6A-HPCS still 
exist in the following aspects. First, the biological meanings of 
using the optimal dinucleotide physicochemical properties are not 
described at all. Second, although a web-server was developed for 
M6A-HPCS at http://csbio.njust.edu.cn/bioinf/M6A-HPCS, it 
couldn’t be accessed anymore.

RNA-MethylPred

To further improve the accuracy of m6A site identification, Jia 
proposed a new computational method called RNA-MethylPred. 
In this method, three kinds of feature extraction strategies were 
used to represent the RNA sequences in dataset S

2
 [16].

Bi-profile bayes vector (V) was employed to reflect the posterior 
probability of positive and negative samples.

V= [p1, p2,…, pn, pn+1,…, p2n]             (14)

where the first n components denotes the posterior probability 
of each nucleotide at the i-th position in the positive samples, the 
remaining n components denotes the posterior probability of each 
nucleotide at the i-th position in the negative samples. n is equal to 
the length of the RNA sequence (i.e. n=51). 

Two forms of dinucleotide composition were defined to reflect 
sequence order information.

.

ab
ab

a

NP
N

=              (15)

'

1
ab

ab
NP
n

=
−

                (16)

where N
ab

 is the number of neighboring dinucleotide (a, b can be 
nucleotide A, C, G or U), a• indicates any adjoining dinucleotides 
that starting with a.

K nearest neighbor (KNN) scores were used to measure whether 
the local sequence similarity. To this end, similarity score S(A,B) 
between two sequence fragments A and B was defined as

( ) [ ] [ ]
1 51

, ( , )
i

S A B Score A i B i
≤ ≤

= ∑              (17)

A[i] indicates the nucleotide at the i-th position in sequence 
segment A, and the score of two nucleotides was defined as

2           
1    

whentwonucleotides matched
Score

whentwonucleotides mismatched
+

=  −
             (18)

Based on Equations. (11) and (12), the KNN score was achieved by 
calculating the percentage of the positive neighbors in its KNNs. In 
RNA-MethylPred, the 20 considered Ks were 10, 20, ..., 200.

Finally, these features were combined together and used as the 
input of SVM to perform the prediction. In the jackknife test, the 
RNA-MethylPred obtained an accuracy of 76.51% for identifying 
m6A sites in the S. cerevisiae transcriptome. Rather than building a 
web-server, the authors provided a MATLBA package for the RNA-
MethylPred method.

RAM-ESVM

As introduced above, various features and predictors have been 
proposed for identifying m6A sites. However, their performances 
are still not satisfactory. In 2017, Chen developed an ensemble 
classifier called RAM-ESVM, which combines three basic classifiers 
based on different features including PseKNC, motif features, and 
optimized K-mer [57]. The first two classifiers (SVM-PseKNC and 
SVM-motif) were built based on SVM by using PseKNC and motif 
features as the inputs, respectively. The third one is also a SVM 
based classifier and its input features are optimized gapped k-mers, 
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which is achieved by using the GkmSVM software. The three basic 
classifiers vote for the final result based on the voting score.

( )
3

1
( , )      ( 1, 2; 1,2,3)i k i

k

V f pre C Class i k
=

= = =∑  (19)

where V
i
 is the voting score for the RNA sample belonging to the 

classi (i=1: m6A sites; i=2: non- m6A sites), and

( )( ) ( )1:    
,

0 :    
k i

k i
if pre C Class

f pre C Class
otherwise

 ∈
= 


             (20)

The final prediction is determined by the argument that maximizes 
the voting score Vi,

Sgn(i) = arg max
i
{V

i
}             (21)

In the jackknife test, the RAM-ESVM produced an accuracy of 
78.35% for identifying m6A sites in the S. cerevisiae transcriptome. 
The RAM-ESVM can be freely accessed at http://server.malab.cn/
RAM-ESVM/.

RAM-NPPS
In 2017, another m6A site predictor, called RAM-NPPS, was 
proposed by Xing, which is based on multi-interval nucleotide pair 
position specificity (NPPS). 

For a given RNA sequence segment P, it can be represented by 

P=P+-P-. P+ and P- can be formulated as

1 2 51      (  is )kP p p p p orξ ξ ξ ξ ξ ξ= … … + −  (22)

To obtain 
kpξ , single nucleotide position matrix sT ξ  and dinucleotide 

position matrix dT ξ  are defined as following

,1 ,2 ,51

,1 ,2 ,51

,1 ,2 ,51

,1 ,2 ,51

A A A

C C C
s

G G G

U U U

f f f
f f f

T
f f f
f f f

ξ ξ ξ

ξ ξ ξ
ξ

ξ ξ ξ

ξ ξ ξ

 
 
 =  
 
  









  (23)
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             (24)

The elements in the two matrices indicate the occurrence 
probability of the nucleotide in each position and the occurrence 
probability of the nucleotide pair at position i and i+η, respectively. 

Suppose the dinucleotide between the i-th nucleotide and (i+η)-th 
nucleotide is ‘ab’, kpξ  can be calculated according to the conditional 
probability,

,

,

( )
( )

ab i
k

b i

fP a bp
P b f

ξ
ξ

ξ

∩
=  (25)

Accordingly, the RNA sequence can be converted into the feature 
vector as described in Eq. 18. When the optimal interval value of 
the two nucleotides is set as η=5, the SVM based computational 
model RAM-NPPS was built, which is available at http://server. 
malab.cn/RAM-NPPS/. In the jackknife test, RAM-NPPS yielded 
an accuracy of 79.92% for identifying m6A sites in the S. cerevisiae 
transcriptome.

DeepM6APred

More recently, Wei proposed a new method called DeepM6APred, 
which represented the RNA samples by using both the above 
mentioned NPPS feature and binary string encoding scheme [63]. 
Different from traditional methods, before directly using these 
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features to make predictions, the deep-belief network was used to 
automatically learn meaningful feature representations from raw 
input sequences. Finally, an optimal feature set containing 429 
features was obtained, based on which a predictive accuracy of 
80.50% was obtained for identifying m6A sites in the S. cerevisiae 
transcriptome. To the best of our knowledge, this is the best 
accuracy for identifying m6A sites in the S. cerevisiae transcriptome 
till now. The DeepM6APred can be accessed at http://server. 
malab.cn/DeepM6APred.

Comparison of various prediction methods

In this section, we performed a comparison on existing methods 
for identifying m6A sites in the S. cerevisiae transcriptome. Since 
SRAMP is a mammalian specific predictor and m6Apred is 
trained based on dataset Ē

1
, for a fair comparison, they were not 

considered here. The predictive accuracies of the other 7 methods 
for identifying m6A sites based on the benchmark dataset Ē

2
 were 

shown in Figure 3. It was found the performance of DeepM6APred 
ranks the top. 

To further demonstrate the generalization ability of these methods, 
an independent dataset was built, which includes 239 m6A site 
containing sequences obtained from the RMBase, and the same 
number of non-m6A site containing sequences. All these sequences 
are 51 nt and independent from the samples in the dataset S

2
, 

which are available at https://github.com/chenweiimu/m6a. 

It should be point out that the web-server of M6A-HPCS is not 
accessible anymore as indicated in its homepage, and the pRNAm-
PC could not make predictions for these independent sequences. 
Therefore, the comparisons were performed among the remaining 
methods (i.e. iRNA-Methyl, RAM-ESVM, RNA-MethylPred, RAM-
NPPS, and DeepM6APred). Their predictive results for identifying 
m6A sites in the independent dataset were reported in Table 2. 
It was found that the Sn, Acc and MCC of DeepM6APred are 
much higher than the other four methods. Although iRNA-Methyl 
obtained a high Sp, it has lower Sn, Acc and MCC. Thus, we can 
draw a conclusion that the performance of DeepM6APred is the 
best, while the performance of iRNA-Methyl is comparable to 
RNA-MethylPred and RAM-NPPS.

As demonstrated by many previous studies on a series of important 

Figure 3: The performance of different methods for identifying 
m6A sites in the benchmark dataset Ē

2
.
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The computational approaches for identifying m6A sites in the S. 
cerevisiae transcriptome are introduced and discussed.

To help biologists choose appropriate methods for identifying 
m6A sites, a comprehensive comparison on existing methods was 
performed on the independent dataset.

The challenges and future directions for identifying RNA 
modifications were discussed.

Remarks and perspective
In this paper, we comprehensively reviewed the computational 
methods for identifying m6A sites in the S. cerevisiae transcriptome 
and evaluated their performance based on the independent 
dataset. Although these methods obtained quite good results in 
identifying m6A sites when tested by the benchmark dataset S

2
 of 

Section 2, their exploited or extrapolative effectiveness in practical 
application [139] was not so ideal as reflected by the fact when 
tested by the independent dataset.

The poor performance of these methods on the independent 
dataset is due to the following reason. All these methods were 
trained based on dataset S

2
, in which both positive and negative 

samples were obtained by selecting the sequences containing 
RGAC consensus motif. However, in most cases, the m6A site may 
not locate in the RGAC consensus motif. Thus, the construction of 
the benchmark dataset in such a way precluded the generalization 
ability of these methods. In order to improve the performance and 
generalization ability of the computational methods for identifying 
m6A sites, much more efforts should be made by considering the 
following aspects.

The performance is dependent on the benchmark dataset

Although several benchmark datasets have been established for 
training computational models for identifying m6A sites, the 
challenges still exist in the construction of the benchmark dataset.

Compared with the positive samples, there is no uniform standard 
to collect negative samples (non-m6A samples). The popular strategy 
of obtaining non-m6A samples is to select the adenosines that are 
not experimentally annotated as being methylated. It indeed raises 
the possibility that the m6A sites are not identified may serve as 
false negative samples. In addition, in the real case, the number 
of non-m6A sites is significantly higher than that of m6A sites. The 

biological topics (see example [161,162,166,168,170,173,180-182]), 
using image or graphic approaches to study biological systems can 
provide intuitive insights for helping analyze complicated relations 
therein, in view of this, the accurately predicted m6A sites by the 
different methods were presented in Figure 4. As we can see from 
the figure, of the 239 m6A site containing sequences, 116 were 
correctly identified by DeepM6APred, 69 by RAM-NPPS, 65 by 
RNA-MethylPred, 46 by iRNA-Methyl, and 45 by RAM-ESVM. 
These results indicate that for users who are interested in identifying 
m6A sites in the S. cerevisiae transcriptome, the DeepM6APred 
predictor should be their first choice, and the other predictors, 
namely RAM-NPPS, RNA-MethylPred, iRNA-Methyl and RAM-
ESVM, may used as complementary tools in this regard. 

Ke   Points

It is an urgent task to develop effective computational approaches for 
detecting m6A and other RNA modifications in the transcriptome.

Table 2: Performance comparisons of different methods for identifying 
m6A sites based on independent dataset. See Eq.5 for the definition of 
metrics below.

Methods Web server address Reference

Schwartz’s 
method (2013)

Not available {Schwartz, 2013 #29}

m6Apred (2015)
http://lin-group.cn/server/
m6Apred

{Chen, 2015 #30}

iRNA-Methyl 
(2015)

http://lin-group.cn/server/
iRNA-Methyl

{Chen, 2015 #31}

SRAMP (2016) http://www.cuilab.cn/sramp/ {Zhou, 2016 #32}

M6A-HPCS 
(2016)

http://csbio.njust.edu.cn/
bioinf/M6A-HPCS/

{Zhang, 2016 #39}

pRNAm-PC 
(2016)

http://www.jci-bioinfo.cn/
pRNAm-PC

{Liu, 2016 #33}

RNA-MethylPred 
(2016)

Not available {Jia, 2016 #36}

RAM-ESVM 
(2017)

http://server.malab.cn/RAM-
ESVM/

{Chen, 2017 #34}

RAM-NPPS 
(2017)

http://server.malab.cn/RAM-
NPPS/

{Xing, 2017 #35}

DeepM6APred 
(2018)

http://server.malab.cn/
DeepM6APred

{Wei, 2018 
#40;Wei,2018 #40}

Figure 4: The detail predictive results of DeepM6APred, RAM-NPPS, iRNA-Methyl, RAM-ESVM and RNA-MethylPred based on 
the independent dataset. Each row is a sample in the independent dataset. The correctly identified m6A site containing samples were 
highlighted in red, and the counterparts were in blue.

y
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existing benchmark datasets are all balanced ones that contain 
roughly equal number of m6A samples and the randomly selected 
non-m6A sample. Such randomly sampling of non-m6A samples 
may lead to inadequate learning and the models trained on such 
a dataset would change when the selected non-m6A samples are 
different. To solve these challenges, more efforts can be made in 
the following aspects.

First, the one-sided selection (OSS) undersampling and synthetic 
minority oversampling technique (SMOTE) can be used to balance 
the non-m6A and m6A samples and minimize the influences of 
imbalance issue. The one-sided selection (OSS) undersampling 
employed the condensed nearest-neighbor to remove redundant 
negative samples that are far from the boundary of the class and the 
Tomek links to eliminate borderline samples and samples suffering 
from class label noise. By doing so, the number of non-m6A samples 
can be decreased. On the other hand, the SMOTE will resample 
the small class (m6A samples) by taking each small class example 
and introducing synthetic examples along the line segments joining 
it to the small class nearest neighbors. Accordingly, the positive and 
negative samples will be balanced.

The second way to deal with such an imbalance problem is to use 
ensemble techniques, which trains basic classifiers with different 
sampling data and combines their results to reduce the random 
sampling bias. The key step of this technique is to select meaningful 
negative samples to train basic classifiers.

Another strategy is to use cost-sensitive classifiers, such as XGboost 
(eXtreme Gradient Boosting), which can be trained with all the 
samples without selecting a subset of negative samples and prevent 
training model from over-fitting by defining different costs for the 
misclassified positive and negative samples.

Encode RNA sequences using effective schemes

Feature extraction strategy is another essential step to build 
computational models for identifying m6A sites. The performance 
of existing models for identifying m6A sites depends on how to 
accurately represent RNA sequences. The encoding schemes are 
based on the experiences and usually derived from the segments 
surrounding the m6A sites, such as pseudo nucleotide compositions, 
physicochemical properties, position specific nucleotide/
dinucleotide composition, and so on. Although considerable 
progresses have been achieved, the following aspects should be 
considered for designing distinguishable feature descriptors in the 
future work.

Except for Schwartz’s and Zhou’s works, none of the other existing 
computational methods represented the RNA samples using RNA 
secondary structure information [55]. By regulating the interaction 
of methyltransferase complex with RNA sequences, RNA secondary 
structure is closely related to the formation of m6A. Therefore, it 
is necessary to integrate this kind of feature when constructing 
more powerful computational models for identifying m6A sites. To 
this end, the RNAfold tool in ViennaRNA package can be used to 
predict RNA secondary structure, whose output is dots (indicate 
unpaired nucleotides) and brackets (indicate paired nucleotides). If 
encode unpaired nucleotides using 0 and the paired one using 1, a 
given RNA sample will be transferred into a feature vector with its 
elements are 0 and 1.

Another shortcoming of existing methods is that existing 
computational methods directly use the entire features, which may 
lead to over-fitting problems, reduce the generalization capacity 
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of the model and increase the computational time. In order to 
alleviate irrelevant features and overcome the above mentioned 
shortcoming, the feature selection techniques, such as minimal 
redundancy maximal relevance (mRMR), maximum relevancy 
maximum distance (MRMD), and analysis of variance (ANOVA), 
can be used to winnow out the optimal features. 

Generalizability of existing computational approaches

Compared with the performance for identifying m6A sites in 
other species, the accuracy for identifying m6A sites in the S. 
cerevisiae transcriptome is still far from satisfactory. Therefore, new 
computational models are still required. Besides support vector 
machine and random forest, other machine learning methods 
such as Native Bayes, Logistic Regression, and K-nearest neighbor 
are all potential candidates to build new computational models 
for identifying m6A sites. With the development of convolutional 
neural network and deep learning, these advantaged approaches 
are also suggested to be used in developing computational models. 
In addition, since most of the existing methods are complementary 
to each other (Figure 4), it’s wise to employ the ensemble 
classification techniques to develop computational models with 
high performance.

Besides m6A, the pseudouridine, N1-Methyladenosine (m1A), 
and 5-methylcytosine (m5C) are also frequently observed RNA 
modifications. However, both the computational models and 
experimental techniques couldn’t simultaneously identify these 
different types of RNA modifications. To address such a challenge, 
more efforts should be made to develop a platform that can be used 
to simultaneously detect different types of RNA modifications.

The authors thank Dr Cangzhi Jia for her assistance in running the 
RNA-MethylPred program.
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