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INTRODUCTION

Lupus Erythematosus (Le) is a spectrum of autoimmune 
connective tissue diseases that encompasses differing symptoms 
and severities, ranging from limited skin manifestations to 
multisystemic disease [1]. Systemic lupus erythematosus (SLE) 
is a clinical entity that refers to inflammation and tissue 
damage involving multiple organ systems, whereas cutaneous 
lupus erythematosus (CLE) primarily affects the skin and 
mucosal tissue. Up to 70% of patients with SLE experience 
skin involvement, and certain clinical subtypes of CLE have an 
increased risk for progression to systemic disease. The incidence 
of CLE is slightly higher than the incidence of SLE, estimated 
to be 4.3 per 100,000, compared to 2.9 per 100,000 in SLE 
[2-4]. CLE exhibits a female predominance with an average age 
at onset of 48.5 years [2]. CLE is associated with psychological 
stress and severely impaired quality of life [5].

CLINICAL MANIFESTATIONS OF CLE

CLE is a photodermatosis, meaning that ultraviolet UV light 
can trigger disease or disease flares. CLE can be divided into 
three main groups based on the location and prognosis of the 
skin lesions [6]. These include acute CLE (ACLE), subacute CLE 
(SCLE) and chronic CLE (CCLE). ACLE is characterized by a 
transient erythematous patch, known as the malar or “butterfly” 
rash, over the cheeks and nose but sparing the nasolabial folds 
[6]. Widespread erythematous eruptions may also be present 
on sun-exposed areas. ACLE is almost always associated with 
systemic disease, particularly renal disease. In SCLE, patients 
develop papulosquamous and/or annular-polycyclic lesions on 

sun-exposed areas [6]. The lesions are usually nonscarring and 
associated with scaling, depigmentation and telangiectasias. 
Up to 50-60% of all patients with SCLE may develop systemic 
involvement, however unlike ACLE; severe renal or CNS 
disease is uncommon [7]. CCLE can be further divided into 
several subsets, including tumid lupus, chilblain lupus, lupus 
panniculitis and discoid lupus erythematosus (DLE). DLE is the 
most common variant, usually presenting as localized, chronic, 
scarring lesions on the scalp, face, ears and other sun-exposed 
areas [6]. Generalized lesions affect larger areas of the body, 
above and below the neck, and are more frequently associated 
with SLE. Extracutaneous symptoms in DLE are uncommon, 
with only 5% of patients developing SLE [8].

PATHOPHYSIOLOGY 

CLE is characterized histopathologically by interface dermatitis 
with a mononuclear cellular infiltrate at the dermoepidermal 
junction. Similar to SLE, the etiology of CLE is multifactorial, 
involving genetic, environmental and immune factors.

GENETICS

CLE occurs in patients with a family history of lupus, 
particularly between twins, suggesting a genetic component 
to the pathogenesis of CLE. Certain major histocompatibility 
complex (MHC) class I and II alleles, such as HLA-DR2 and 
HLA-DR3 have been linked to CLE [9]. Genetic regions outside 
the MHC have also been shown to increase susceptibility to 
CLE disease by stimulating activity of innate and adaptive 
immune pathways. These include various cytokine genes (IL-
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1, IL-10), their receptors (gamma receptor II, T cell 
receptor), adhesion molecules (ICAM-1, E-selectin), 
antioxidant enzymes (glutathione S-transferase M1) and 
apoptosis genes (Fas) [10]. Genetic variations in genes 
involving the type I interferon pathway are implicated in CLE 
pathogenesis. Specifically, mutations in the IFN regulatory 
factor 5 (IRF5), tyrosine kinase 2 (TYK2), and three prime 
repair exonuclease 1 (TREX1) genes, increase type I IFN 
production in some patients with CLE. Familial chilblain 
lupus, a rare form of CLE characterized by ulcerating acral 
nodules, is associated with mutations that decrease the 
activity of a DNA exonuclease, TREX1 [11]. Moreover, 
deficiencies in genes encoding complement components (C1q, 
C1r, C1s, C2 and C4) have also been reported to contribute 
to the pathogenesis of CLE, due to defective complement 
clearance of apoptotic debris [12].

ENVIRONMENT

UV exposure

It is well known that ultraviolet (UV) irradiation is 
an important trigger for CLE. Skin lesions in patients with 
CLE are often provoked or aggravated by sunlight exposure. 
UV light contributes to CLE lesions through several pathways. 
Exposure of the skin to UV light causes apoptosis of 
keratinocytes via production of reactive oxygen species, 
direct DNA damage, and activation the Fas/FasL system 
[13,14]. The accumulation and defective clearance of 
apoptotic cells causes externalization of autoantigens 
resulting in an inflammatory cascade and recruitment of 
immune cells that leads to formation of CLE skin lesions 
[15]. UV light directly induces production of 
inflammatory cytokines and chemokines, particularly type I 
IFNs and interferon-stimulated genes (ISGs), which 
recruit inflammatory cells into the skin and cause tissue 
inflammation [16,17]. Simultaneously, UV exposure drives 
Langerhans cells, a specialized dendritic cell that is thought 
to play a role in regulatory responses, out of the skin and 
into draining lymph nodes [16]. In addition to the 
plasmacytoid dendritic cells (pDCs), which are the most 
established type I IFN producers in the skin, there is 
evidence to suggest that UV may activate the type I IFN 
system in many cell types of both immune and non-immune 
origin [17]. High levels of IFN- induce apoptosis of 
keratinocytes, and also abrogate anti-inflammatory signals 
resulting in an amplified inflammatory response [18]. 

Smoking

Smoking is another important environmental factor of 
CLE, particularly DLE. One mechanistic explanation is that 
cigarette smoke can cause neutrophils to undergo 
neutrophil extracellular trap (NET) formation, thereby 
initiating pDC maturation and activation [19]. Moreover, 
smoking results in a decreased response to anti-malarial drugs 
[20]. A recent meta-analysis demonstrated that smoking is 
associated with a twofold decrease in the proportion of 
patients with CLE achieving cutaneous improvement with 
antimalarials [21]. One suggested explanation is that tobacco 
is known to induce cytochrome p450 system, and 
antimalarial drugs are partly metabolized via this pathway. 
However, the mechanism by which tobacco smoke may 
interfere with antimalarials remains unclear [21].
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Pharmacologic triggers

Many drugs have been associated with drug induced (DI) CLE 
development, with lesions presenting similarly to SCLE. These 
drugs include but are not limited to, antihypertensives, statins, 
antifungals, NSAIDs, antiepileptics, diuretics and proton pump 
inhibitors [22]. The etiology is not fully understood, and is 
likely multifaceted. Possible mechanistic explanations include 
molecular mimicry, disruption of central immune tolerance, 
direct cytotoxicity caused by certain reactive drug metabolites, 
and hypomethylation of DNA resulting in altered T-cell 
expression [23].

IMMUNE FACTORS

Dysregulation of cellular and humoral immune responses 
through cytokine cascades are also implicated in the pathogenesis 
of CLE, with IFN as a key player in the autoimmune response. 
Indeed, several studies have reported increased type I IFN 
expression in the serum and lesional skin of lupus patients, 
particularly IFN and IFNκ [24,25]. Increased type I IFN score 
has been shown to correlate with increased CLE Disease Area 
and Severity Index (CLASI) activity score, a measure of CLE 
skin disease severity [26]. Moreover, the patients’ systemic 
symptoms, including fever, fatigue, rash, arthralgia, and myalgia 
are associated with type I IFNs. In CLE, pDCs produce type 
I IFN, mainly IFN, in response to nuclear antigens and to 
immune complexes. IFNκ plays a key homeostatic role in 
regulating basal type I IFN responses in the skin, and has been 
recently implicated in the pathogenesis of CLE [25]. Increased 
constitutive expression of IFNκ by lupus keratinocytes drives 
the activation of dendritic cells, resulting in the amplification 
of type I IFN signaling and thus photosensitivity.

IFNs activate the JAK/STAT pathway to stimulate production 
of CXCL9, CXCL10 and CXCL11, which recruit CXCR3+ 
immune cells to the skin [27]. Inflammatory cells in CLE are 
comprised mainly of T lymphocytes, with higher levels of Th1 
and Th17 cells. Other infiltrating cells include NK cells, B 
cells/plasma cells, and in some subtypes, neutrophils. PDCs 
also express CXCR3 ligands, allowing pDC-produced IFN to 
recruit additional pDCs into the skin and further enhance the 
production of IFN. In addition to CXCL9, CXCL10, CXCL11, 
which are the most highly, expressed chemokines in CLE, the 
chemokine CCL27 has been recently identified in recruiting 
memory T cells into the skin [27]. Type I IFN also increases the 
level of cytotoxic molecules perforin and granzyme B, as well as 
mediators of apoptosis CD59 receptor and TRAIL, the TNF-
related apoptosis-inducing ligand [17].

Like type I IFN, type II and III IFN also play a role in the 
pathogenesis of CLE [17]. Type II IFN is involved in increasing 
tumor necrosis factor- (TNF) levels which serves to activate 
B cells antibody production. Type II IFN appears to be most 
associated with DLE [28]. CLE patients exhibit high levels 
of TNF in their serum, however the role of TNFα in CLE 
is controversial [15]. Type III IFNs, particularly IFNλ, are 
produced by keratinocytes and induce the expression of several 
proinflammatory cytokines, including CXCL9, which drive 
the recruitment of immune cells and are associated with the 
formation of CLE skin lesions [29].
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THERAPEUTIC OPTIONS FOR CLE

Current treatment options

To date, there are no drugs that have been 
approved specifically for the treatment of CLE by the 
Food and Drug Administration (FDA) as therapeutic 
trials for SLE medications often exclude CLE patients 
[30,31]. Most of the current treatment strategies for CLE 
are borrowed from SLE, and are based on severity and types 
of cutaneous lupus. Prevention measures, including 
photoprotection, smoking cessation and avoiding drugs 
that can trigger symptoms, are essential in CLE 
treatment. Pharmacologic treatments include topical 
corticosteroids, topical calcineurin inhibitors, and 
antimalarials. Antimalarial drugs, including 
hydroxychloroquine, quinacrine, and chloroquine, are 
first-line medications for CLE, and are indicated when skin 
lesions are widespread or refractory to topical agents [32]. 
They exert their effect via immunomodulatory properties. 
In patients with recalcitrant CLE, the addition of 
immunosuppressives, such as methotrexate (MTX), 
mycophenolate mofetil (MMF), or azathioprine, may be 
helpful. Other treatment options include oral retinoids, 
dapsone, intravenous immunoglobulin  IVIG, pulsed dye 
laser therapy, thalidomide and lenalidomide [31]. 

Emerging therapies

Improved insights into the immunopathogenesis of CLE 
has led to the development of therapies that specifically 
target critical pathways in CLE. Given the key pathogenic 
role of the type 1 IFN pathway, multiple newly developed 
IFN-directed therapies are emerging. Rontalizumab and 
Sifalimumab are humanized monoclonal antibodies 
specifically targeting IFN. While the latter did show a 
reduction in CLASI, both have failed to show clinical 
benefit in SLE, and Sifalimumab was ultimately 
discontinued to pursue more encouraging results from 
Anifrolumab [33,34]. Anifrolumab, a human monoclonal 
antibody to type I IFN receptor subunit 1, has shown 
to improve CLASI scores in SLE patients with cutaneous 
involvement during phase 2 and 3 clinical trials [35]. 
These results suggest that type I IFN is a promising target for 
the treatment of CLE, and that targeting the receptor may 
prove to be a more effective strategy owing to the fact that 
it will prevent signaling from all ligands. 

In addition, therapies targeting IFN-producing pDCs 
have also emerged. BIIB059 is a humanized IgG1 
monoclonal antibody that targets pDCs, downregulating 
type I IFN production. A phase 2 clinical trial was 
recently completed with BIIB059 demonstrating 
significant improvement in CLE and SLE endpoints 
[36].  Toll-like receptors (TLRs) are also involved in 
inducing IFN production, and thus antagonists 
targeting TLRs are currently in  Phase 1 trials for CLE 
treatment (NCT04647708 and NCT03159936) [37]. 

Although type II IFN is implicated in CLE, an antibody 
targeting IFNγ  (AMG811) failed to show clinical 
improvement in patients with CLE [38]. Moreover, studies 
investigating IL-6 blockade via monoclonal antibody 
Sirukumab, did not show any clinically significant changes 
for skin manifestations in SLE patients [39].
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In recent years, several monoclonal antibodies targeting 
type 17-mediated inf lammation have shown success in 
multiple autoimmune diseases such as psoriasis and 
rheumatoid arthritis [40,41]. Studies have shown that IL -
17A may play a major role in the pathogenesis of DLE, and 
thus the efficacy and safety of an anti-IL -17A monoclonal 
antibody, Secukinumab, is currently under investigation 
(NCT03866317). In a study assessing the safety and tolerability 
of Ustekinumab, an IL -12/23 monoclonal antibody, there 
was a statistically significant improvement in skin disease 
compared with placebo [42]. However, Ustekinumab has also 
been paradoxically reported to induce CLE, thus the roles of 
IL -12 and IL -23 remain unclear [43]. Similarly, conflicting 
results exist for therapies targeting TNF [30]. 

B-cell targeted therapeutic approaches have also been
developed for lupus. Belimumab is a monoclonal antibody
against B-lymphocyte simulator (BLyS), a B-cell survival factor, 
which has been approved for use in SLE. While Belimumab
improves cutaneous disease in CLE patients, larger
randomized controlled studies are needed to fully elucidate
its role in CLE [44]. Mixed results have been observed for the
efficacy of B-cell depleting monoclonal antibody Rituximab
in SLE patients with mucocutaneous manifestations [45,46].

Other potential therapeutic targets for CLE include 
intracellular signaling molecules [30]. Janus kinases (JAKs) 
are critical tyrosine kinases that act as mediators and 
amplifiers of pro-inf lammatory signals. JAK inhibitors have 
been approved for use in adults with rheumatoid arthritis 
and psoriatic arthritis and might be a promising approach for 
the treatment of LE skin lesions. Baricitinib and Ruxolitinib 
(JAK1/2 inhibitaors) showed efficacy for patients with 
chilblain lupus erythematosus [47]. However, Baricitinib 
failed to show improvement in skin disease during a phase 
II clinical trial for SLE [48]. Additional trials are currently 
investigating the role of other JAK inhibitors, namely 
Tofacitinib (NCT03288324 and NCT03159936). Moreover, 
JAK inhibitors in combination with spleen tyrosine kinase 
(SYK) inhibitors are also under investigation for treatment of 
CLE (NCT03134222). 

Inhibitors of C-Jun N-terminal kinase (JNK) and Mitogen-
activated protein kinase (MAPK) have also been developed. 
A phase II clinical trial with a small-molecule inhibitor of 
JNK, tanzisertib, was conducted in CLE, however these trials 
were terminated due to inappropriate benefit/risk profiles 
(NCT01466725). Moreover, while inhibitors of the MAPK 
pathway have shown encouraging results in pre-clinical 
models of lupus, human clinical trials targeting the MAPK 
pathway for CLE have not yet been conducted [49,50].

Finally, pharmacologic agents that are structurally similar to 
lenalidomide are under development. In a phase II clinical 
trial, use of a lenalidomide derivative, CC-220, has been 
shown to correlate with improvement in CLASI score and 
pDC reduction [51]. Ongoing clinical trials are highlighted 
in Table 1.
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CONCLUSION

CLE is a multifactorial condition involving genetic 
predisposition, environmental factors and innate and 
adaptive immune responses. While lupus drug trials are often 
focused on SLE, multiple clinical trials for CLE treatment 
are currently in progress. Advances in the treatment of CLE 
are attributed to better understanding of the pathogenesis 
as well as the development of CLASI, which provides a 
quantifiable endpoint for CLE trials. Further clinical trials 
for CLE should be encouraged to provide CLE-specific data 
and to ensure improved health outcomes.
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