

Radioactive Disequilibrium Studies in Uranium Series of Core Samples of Koppunuru Area, Guntur District, Andhra Pradesh, India

Srinivas Y*, Singh RV, Rahul Banerjee, Sharma PK and Verma MB

Atomic Minerals Directorate for Exploration and Research, Begumpet, Hyderabad

Abstract

Disequilibrium studies were attempted on mineralised core samples (n=870) from Koppunuru uranium deposit located in south-western part of Palnad sub-basin, Guntur district, Andhra Pradesh, India. The area exposes Banganapalle quartzites unconformably deposited over altered biotite granite (basement). Uranium mineralisation in Koppunuru deposit is hosted by Banganapalle quartzites well above the unconformity, and grit/basement granite close to the unconformity contact. For disequilibrium studies, the core samples were broadly divided in two groups, (a) quartzite hosted (above unconformity) and (b) basement granite hosted mineralisation (below unconformity). Average disequilibrium factor of 41% has been recorded in favour of parent uranium in both types of core samples. It shows significant enrichment of uranium in the system as evident from 41% of disequilibrium in favour of parent uranium. This is probably due to significant migration of some of the daughter radio nuclides due to dissolution of minerals by groundwater action. Besides, the escape of radioactive radon might have accentuated the disequilibrium factor thus increasing the grade of uranium mineralization. The presence of fractures and faults in the study area are the probable conduits for radon migration/escape. Linear regression coefficient between uranium and radium is 0.98 indicates invariability of disequilibrium irrespective of grade.

Keywords: Uranium; Disequilibrium factor; Beta-gamma method; Gamma ray spectrometry; Guntur district; Andhra Pradesh

Introduction

Linkage between economic growth of any country and energy requirement is well known, and hence, sustainable energy resources are essential. During the past three decades the world was able to cope with an increasing energy demand by relying more on fossil fuel [1-3]. However, the progressively dwindling reserves of fossil fuel and a deeprooted concern about global warming, arising out of CO₂ emission due to the excessive use of fossil fuel, have now developed a growing interest in nuclear energy as an alternative green source [4,5]. Uranium is one of the main nuclear fuels, continuous supply of which is needed for sustainable development in the energy field. In India, an extensive exploration programme is being carried out in different geological domains to establish new uranium resources and reserves to overcome the demand and supply gap in nuclear energy sector. The uranium series disequilibrium in radioactive ore poses a critical problem for proper assessment of the resource in most of the cases. However, it is observed that the magnitude and frequency of radioactive disequilibria is generally ignored which leads to underestimation or overestimation of ore reserve [6,7]. Thus, to overcome uranium ore deposit evaluation related constraints, the disequilibrium studies are significant both in field and laboratory counting measurements.

In the uranium series, the system is considered to be in radioactive equilibrium when all the daughter products decay at the same rate in which they are produced from the parent isotope in an ideally closed system [6,8,9]. Thus, at radioactive equilibrium, each of the daughter products would be present in a constant proportion to the parent isotope. However, such equilibrium is rarely observed in uranium ore bodies [7,9]. Various studies have been undertaken on the nature and significance of disequilibrium conditions in uraniferous deposits [10], which have indicated that different geologic and physicochemical processes influence the system. The addition or removal of any isotope in the disintegration series in a radioactive mineral causes disequilibrium in the proportions of the parent isotope to its daughter products [9]. The present paper deals with the evaluation of disequilibrium pattern in unconformity proximal and fracture controlled types of uranium mineralisation in Koppunuru area, Guntur district, Andhra Pradesh, India using beta-gamma and gamma-ray spectrometry techniques on mineralised borehole core samples.

Geological Setting

Koppunuru area is located in the south-western part of the Neoproterozoic Palnad Sub-basin, where Kurnool sediments are deposited unconformably over the Archaean to Palaeoproterozoic basement granite and gneisses [11,12]. Basement granites are exposed as an inlier over an area of 5 km x 2.5 km to the south-east of Koppunuru, and along the up-thrown block of regional WNW-ESE trending fault to the south of Koppunuru (Figure 1). These are dissected by a number of ENE–WSW, NE–SW, NW–SE and a few N–S trending lineaments represented by dolerite dykes, fractures and faults [13]. The Kurnool sediments are mainly represented by Banganapalle, Narji and Paniam formations comprising quartzites, shales and limestones. The Banganapalle Formation (10-173m thick), the oldest sedimentary lithounit in the study area, and comprises quartzite and intercalated grey shale sequence with basal conglomerate/grit [12].

Proterozoic unconformity-related uranium deposit in Koppunuru and adjoining areas is predominantly (~85%) hosted by Banganapalle quartzite and grit. At places the mineralisation also transgresses below

*Corresponding author: Srinivas Y, Atomic Minerals Directorate for Exploration and Research, Begumpet, Hyderabad, Tel: +918985738540; +914027776398; Fax: +914027764043; E-mail: ysrinivas.amd@gov.in

Received December 15, 2016; Accepted January 19, 2017; Published January 25, 2017

Citation: Srinivas Y, Singh RV, Rahul Banerjee, Sharma PK, Verma MB (2017) Radioactive Disequilibrium Studies in Uranium Series of Core Samples of Koppunuru Area, Guntur District, Andhra Pradesh, India. J Geol Geophys 6: 277. doi: 10.4172/2381-8719.1000277

Copyright: © 2017 Srinivas Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

the unconformity contact in basement granites along the fracture planes [7,14-19]. It is observed that the mineralisation follows a predominant N-S to NNE–SSW trend sympathetic to faults and fractures in the area. Pitchblende and coffinite are identified as primary uranium ore minerals in Koppunuru deposit, while uranophane, phosphuranylite, metazeunerite and U-Ti complex occur as secondary uranium minerals [15,17].

Sampling and Analytical Techniques

A total of 870 mineralised core samples from 34 boreholes of Koppunuru area have been collected for disequilibrium studies, which includes 620 quartzite/grit and 250 granite samples. Drilling was done using different capacity mechanical coring rigs (Rock Drill-30, Drill Max-400 and Trolley mounted Rock Drill-300). Uranium mineralisation has been intercepted along the studied boreholes at different depths ranging from 26.0 m to 170.0 m. Different mineralised bands show grade and thickness ranging from 0.01% to 0.322% eU₃O₈ and 0.6 m to 7.0 m respectively. Details of mineralized intercepts, lithounit, depth of unconformity, and number of samples collected is shown in Table 1. The mineralised core samples were crushed to -200 mesh to homogenize. 50 g and 140 g of sample were taken after conning and quartering for determination of U₃O₈ (%) by β/γ method, and equivalent U₃O₈ (% eU₃O₈), radium equivalent U₃O₈ (%Ra eU₃O₈), % ThO₂ and % K using High Energy Gamma Ray Spectrometry (HEGS) respectively [6,20]. The representative samples were transferred to

Page 3 of 7

		Mineralis	ed zone			Depth of unconformity	
S.No	BH NO.	from (m)	to (m)	Thickness x Ave.Grade (%eU ₃ O ₈)	Rock Type	(m)	n
		101.25	101.85	0.60 m of 0.040	Gritty Quartzite		
1	KPU/23	104.75	106.45	1.70 m of 0.090	Gritty Quartzite	107	8
2	KPU/57	106.21	107.21	1.00 m of 0.319	Granite	104.3	9
		53 15	53 75	0.60 m of 0.023	Gritty Quartzite		3
3	KPU/68	55 75	56 75	1 00 m of 0 031	Granite	56	2
4	KPII/76	63 15	64 35	1 20 m of 0 088	Gritty Quartzite	65.2	7
•		54.88	57.95	3.07 m of 0.130	Gritty Quartzite		23
5	5 KPU/79	60.05	61.00	1.22 m of 0.130	Granite	58.5	10
		160	161 /	1.40 m of 0.041	Gritty Quartzite		3
6	KPU/82	162.9	164.9	1.00 m of 0.016	Cranita	162	
		103.0	104.0	3.80 m of 0.130	Quartzito/Shalo		2
7	KPU/93	114.05	116.35	1.40 m of 0.017	Gritty Quartzite	119	11
		156.65	157.65	1.40 m of 0.043	Gritty Quartzite		
8	KPU/108	158.05	150.25	0.30 m of 0.043	Gritty Quartzite	161	5
		140.85	142.05	1 20 m of 0 021	Granite		
9	KPU/110	148.63	142.00	1 16 m of 0.021	Granite	140.7	14
		140.00	140.70		Quartzite/Shale		
10	KPU/112	165.25	168.85	3.60 m of 0.051	Gritty Quartzite	169.45	28
		140 85	142 45	1.60 m of 0.100	Gritty Quartzite		22
11	KPU/118	145	146	1.00 m of 0.019	Granite	145.15	 Q
12	KDI1/123	159.1	163.1	4.00 m of 0.028	Gritty Quartzite	167 /	17
12	N 0/125	125.96	100.1	1 14 m of 0 224	Gritty Quartzite	107.4	16
13	KPU/124	120.0	127.1	1.14 m of 0.020	Cranita	127.8	24
		129.9	140.42	1.40 m of 0.017	Grätte Ouert=ite		24
14	KPU/131	147.24	140.43	1.19111010.017	Gilly Qualizite	149.6	23
		148.72	150.03	1.31 m of 0.016	Granite		4
		141.64	147.08	5.44 m of 0.322	Gritty Quartzite	156 /	93
15		147.9	152.01	4.91 III 01 0.098	Gritty Quartzite		
15	KPU/130	104.14	155.29	1.15 m of 0.025	Gilly Qualizite	150.4	
		100.4	100.11	2.67 III 01 0.020	Granite		20
		100.30	120.04	1.27 III 01 0.0 18	Gränite Critty Quartzita		40
		120.30	130.04	1.00 m of 0.024			12
16	KPU/144	135.22	130.22 130.20 1.04 III 0I 0.024 Granite 130.04 140.27 1.23 m of 0.021 Granite	134.15	20		
		139.04	140.27	1.25 m of 0.021	Granite	_	38
		128.05	120.25	1.40 m of 0.002	Gritty Quartzito		2
17	KPU/147	142.50	129.20	1.20 m of 0.030		142.8	40
		143.59	144.00	1.29 III 0I 0.022	Granite Critty Quartaita		13
10		135.95	130.05	2.10 m of 0.026	Gilly Qualizite	455.7	21
10	KPU/152	100.75	100.4	1.05 m of 0.021	Granite	155.7	10
		112	114.07	1.05 m of 0.010	Critty Quartzita		
19	KPU/153	122.75	102.75	1.07 m of 0.073	Gritty Quartzite	151.2	13
20	KDI1/155	132.75	100.70	1.00 m of 0.073	Gritty Quartzite	138 5	e
20	KPU/155	154.4	155 75	1.35 m of 0.017	Gritty Quartzite	162.35	16
21	KF 0/150	104.4	120.24	1.02 m of 0.067	Critty Quartzite	102.33	10
22	KD11/462	142.15	142.66	1.53 m of 0.000	Gritty Quartzite	142.0	28
22	KF0/103	154.96	145.00	2.14 m of 0.152	Granito	145.0	27
		146.00	147.40	1.20 m of 0.027			57
23		140.22	147.42	1.20 m of 0.027	Gritty Quartzite	156.0	22
23	23 NPU/100	156.0	150.00	2 40 m of 0.027	Granite	100.9	20
24	KDI1/460	00.45	01 65	1.20 m of 0.027	Critty Quartzita	00 0	10
24	NFU/109	30.40	CO.16	1.20 III 0I 0.040		70.0	12
25	KDU/470	90.15	91.05	1.00 III 0I 0.00 I		04.2	20
20	NFU/1/2	96.65	96 55	0.00 m of 0.012	Granita	04.3	e
		00.00	20.00	0.30 III 0I 0.012	Granite		D
26		70.20	39.00	2.47 III 0I 0.139		04	20
20	26 KPU/180	19.30 91.05	82.25	1.04 III 0I 0.101		31	20
	61.05	02.20	1.20 111 01 0.007	Ginny Quartzhe			

Page 4 of 7

27		106.55	108.55	1.20 m of 0.065 Gritty Quartzite		409.9	16
2/ RPU/101	108.9	109.2	0.30 m of 0.200	Granite	100.0	1	
		115.65	116.67	1.02 m of 0.018	Gritty Shale		50
28	KPU/184	121.55	128.55	7.00 m of 0.038	Gritty Quartzite	128.8	52
		139.55	141.45	1.90 m of 0.025	Granite		14
29	KPU/226	38.35	39.65	1.30 m of 0.031	Gritty Quartzite/Shale	40.65	7
30	KPU/230	25.45	27.35	1.90 m of 0.057	Conglomerate	27.9	10
31	KPU/242	79.05	80.95	1.90 m of 0.213	Shale/Quartzite	87.7	13
		86.48	88.95	2.47 m of 0.105	Quartzite		45
		104.2	106.6	2.50 m of 0.017	Grit/Conglomerate		
32	KPU/247	109.15	110.45	1.30 m of 0.020	Grit/Conglomerate	111.55	
		112.15	112.75 0.60 m of 0.016 Granite		40		
		119	119.6	0.60 m of 0.023	Granite		10
		69.1	69.1 70.6 1.60 m of 0.020 Quartzite	Quartzite		9	
33	KPU/252	YU/252 73.5 75.7 2.20 m of 0.018 Gran	Granite	73.4	-		
		84.3	85.3	1.00 m of 0.011	Granite		
34 K		88.08	89.19	1.11 m of 0.039	Quartzite	400.0	
	KPU/255	94.35	96.25	1.90 m of 0.031	Conglomerate	100.9	28

Table 1: Details of mineralised zones in boreholes and host rock of Koppunuru area, Guntur district, Andhra Pradesh.

airtight plastic containers and kept for about a month for attainment of radioactive equilibrium between radon daughters and parent radium in the uranium series [21,22]. Besides, U_3O_8 contents in the samples were also estimated by simultaneous measurement of total beta and total gamma radiations using a LND 73201 beta tube, and 1.75[°] x 2[°] NaI(Tl) scintillation detector, respectively in the samples [23,24].

Estimation of uranium

The concentration of U_3O_8 in the sample was estimated by simultaneous measurement of total beta and total gamma radiations by beta gamma method using equation:

$$U_{3}O_{8} = (1+C)U_{\beta}-CU_{\gamma}$$
 [25] (1)

Where $U_{\beta=\beta}$ activity of uranium in sample.

 $U_{y=y}$ activity of uranium in sample.

C=ratio of Ra_{β} to U_{β} in standard.

The detection limit is 90 ppm with ± 10% error. For accuracy an IAEA reference standard RGU-1 (U_3O_8 value 460 ppm and Ra(eU_3O_8) value 470 ppm) was also analysed (n=5). The U_3O_8 value obtained for RGU-1 by this method was 453 ± 24 ppm.

Estimation of Ra (eU_3O_8) , ThO₂ and K

 $Ra(eU_3O_8)$, ThO_2 and K concentrations in the samples were estimated by using gamma ray spectrometry. A 5" x 4" NaI(TI) scintillation detector was used for the analysis. The detector was coupled to a dMCA-pro-digital- Multi Channel Analyser (Terjet, Germany). The dMCA directly digitizes signals from the radiation detector and stores them in the format desired by the inbuilt software (winTMCA32). For the estimation of $Ra(eU_3O_8)$, the 1.76 MeV gamma ray energy was measured from the Bi-214 as the daughter of radium series always remains in equilibrium with radium. The estimation of ThO_2 was done by measuring the 2.62 MeV gamma ray energy from TI-208 and the 1.46 MeV of gamma ray energy was measured for the estimation of % K. Prior to this, energy calibration was done using standard gamma ray sources ¹³⁷Cs 662 KeV and ⁶⁰Co 1173KeV and 1332 KeV energies. The stripping and sensitivity factors were calculated using standard reference material RGU-1, RGTh-1 and RGK-1supplied by IAEA, Vienna. An In-house (developed at Atomic Minerals Directorate for Exploration and Research, Hyderabad) equilibrium U_3O_8 standard was also used for sensitivity calculations. The samples and standards were taken in the plastic containers of the same volume and size to maintain a same counting geometry to minimize the geometrical error. The containers were sealed carefully to avoid the escape of radon gas from the samples. The counting of samples was done in a Low Background room which is _4 ft below the ground level and walls of the room are made of quartz, with a thickness of 0.9 m. The energy spectra from each sample were obtained by placing the sample on the top of detector.

The Ra(eU₃O₈) concentration was calculated by dividing the net peak area of the characteristic gamma ray energy of 1.76 MeV to the sensitivity of radium [26]. Sensitivity of Ra(eU₃O₈) with a counting time of 200 s is 6.5 counts/ppm for 140 g of sample weight and detection limit is 2 ppm (error <10%). ThO₂ concentration was calculated by dividing the net peak area of the characteristic gamma ray energy of 2.62 MeV to the sensitivity of thorium and similarly the concentration of % K is calculated by dividing the net peak area of characteristic gamma ray energy of 1.46 MeV to the sensitivity of potassium. Sensitivity of ThO₂ with a counting time of 200 s is 2.1 counts/ppm for 140 g of sample weight and detection limit is 5 ppm (error <10%). The net peak area of gamma ray was obtained by subtracting background counts and stripping of the higher energy contribution.

Results and Discussion

The uranium concentration, Ra(eU₃O₈) concentration of 870 core samples from 34 boreholes of Koppunuru deposit with disequilibrium factor (DF), number of samples of both above and below unconformity, mineralised depth ranges, and minimum, maximum and average values of U₃O₈, Ra(eU₃O₈) and ThO₂ of the studied core samples are given in Table 2.

The linear regression equation between radium concentration and uranium concentration has been found from the regression plot:

$$Y(U_3O_8) = 1.384 X (Ra(eU_3O_8)) + 5.862 \text{ with } R^2 = 0.976$$
 (2)

The linear regression plot of studied samples has indicated a correlation coefficient of 0.976 (Figure 2). This plot indicates the association of daughter product with significant enrichment of parent

Page 5 of 7

S. No.	BH No.	No of sample	U ₃ O ₈ (ppm)		Ra(eU ₃ O ₈) ppm			Av. ThO,	DF	No. of samples		
		(n)	Min	Max	Av.	Min.	Max.	Av.	(ppm)		Above u/c	below u/c
1	KPU/23	8	107	2875	774	73	2028	624	21	1.17	8	0
2	KPU/57	9	91	1344	293	57	536	158	19	1.64	0	9
3	KPU/68	5	139	420	255	84	372	181	26	1.47	3	2
4	KPU/76	7	210	3600	1333	132	2270	830	57	1.47	7	0
5	KPU/79	33	122	13529	1749	91	8185	1236	26	1.32	23	10
6	KPU/82	5	140	521	285	104	413	221	17	1.34	3	2
7	KPU/93	11	99	715	330	83	592	267	5	1.27	11	0
8	KPU/108	5	94	448	203	69	294	139	21	1.44	5	0
9	KPU/110	14	113	1848	488	111	996	303	32	1.37	0	14
10	KPU/112	28	95	2730	516	64	2483	375	22	1.35	28	0
11	KPU/118	31	95	1099	291	75	927	251	20	1.28	22	9
12	KPU/123	17	90	1247	352	59	941	265	34	1.4	17	0
13	KPU/124	40	92	7040	656	55	6034	530	22	1.29	16	24
14	KPU/131	27	90	1095	207	68	820	163	26	1.28	23	4
15	KPU/138	113	93	8933	1489	80	7689	1215	25	1.26	93	20
16	KPU/144	50	105	7298	724	78	5081	533	63	1.33	12	38
17	KPU/147	16	101	9851	1179	96	6881	795	78	1.33	3	13
18	KPU/152	31	111	2104	422	98	1541	335	12	1.23	21	10
19	KPU/153	13	123	4264	621	97	3104	470	6	1.27	13	0
20	KPU/155	6	117	3055	1154	85	1908	781	12	1.37	6	0
21	KPU/156	16	122	559	226	94	302	160	11	1.44	16	0
22	KPU/163	65	91	7863	841	72	4635	594	27	1.33	28	37
23	KPU/166	42	95	6700	558	61	5098	402	27	1.44	22	20
24	KPU/169	12	229	3165	1048	187	2188	712	18	1.36	12	0
25	KPU/172	26	102	3241	802	81	2297	566	9	1.4	20	6
26	KPU/180	28	110	13851	2004	28	6885	1333	15	1.88	28	0
27	KPU/181	17	105	4973	1506	15	3491	1170	33	1.62	16	1
28	KPU/184	66	114	6066	509	63	2240	307	15	1.5	52	14
29	KPU/226	7	95	681	316	100	373	224	13	1.32	7	0
30	KPU/230	10	118	3623	632	84	1968	507	8	1.43	10	0
31	KPU/242	13	101	9558	3071	86	5652	2065	6	1.29	13	0
32	KPU/247	55	115	3923	544	82	2909	394	16	1.59	45	10
33	KPU/252	16	90	953	259	46	358	129	32	2	9	7
34	KPU/255	28	90	907	358	74	679	245	28	1.46	28	0
	Total	870										
	Aver	age	112	4120	765	80	2711	544	24	1.41	620	250

Table 2: Details of U₃O_a, Ra(eU₃O_a) and disequilibrium factor (DF) of borehole core samples of Koppunuru area, Guntur district, Andhra Pradesh.

and good correlation among them. The average ThO₂ concentrations of these borehole core samples range from 5 ppm to 78 ppm. The split details of number of boreholes, the concentration ratio of ThO₂/ U₃O₈ in different boreholes is shown in Figure 3. This histogram is showing statistics of the distribution pattern of boreholes in different ratio ranges of ThO₂/ U₃O₈ viz. maximum 10 boreholes fall between 0.01-0.02 range while only 1 borehole falls under 0.13-0.14 range category.

The disequilibrium factor (DF) in the sample is calculated by the following formula

 $DF=U_3O_8$ in the sample/Ra (eU_3O_8) in the sample (3)

The disequilibrium is towards the parent uranium if the value of DF is more than one (DF>1). This is favourable for the prospector as it shows enrichment of uranium resulting in positive corrections in the final ore reserve estimation based on total gamma ray logging data. In contrast, if the value of DF is less than one (DF<1), then disequilibrium

is towards the daughter radium and is a non-desirable condition for uranium prospecting. It signifies partial removal of uranium from the system leading to a lowering of final ore reserve estimates based on total gamma ray logging data. All the boreholes have shown average DF significantly greater than 1 and the disequilibrium factors for studied core samples are listed in Table 2, which shows an average value of 1.41. This suggests enrichment of uranium either due to remobilization and deposition of uranium at the present locale or leaching of daughter products of the uranium series leading to an increase in concentration of parent uranium. These features are further supported by the presence of fractures, faults, felsic and mafic intrusive signifying pre- and post-depositional reactivation in the area providing a hydrothermal gradient for remobilization [17,19]. In addition, the presence of higher hydrouranium content (<10 ppb) away from the ore deposit suggests a possible role of groundwater on radioelement migration and fixation at suitable locales [27].

The studied mineralised core samples are broadly classified in two groups i.e. granite (below uniformity) and cover rock of Banganapalle quartzite/grit (above the unconformity). The disequilibrium factor is separately calculated for both types of samples. Average disequilibrium factor for the granite and quartzite/grit samples is 1.41 (Table 3) and 1.40 (Table 4) respectively. Thus, the study distinctly indicates close similarity in disequilibrium factor for both groups of samples, irrespective of the different lithic compositions and geologic position.

Impact on the ore reserve estimation

The presence of disequilibrium in uranium series between parent and daughter Radium-226 implies that ore grades of mineralised zones demarcated based on total gamma ray logging results needs to be corrected. Usage of Disequilibrium factor will lead to an upward revision in the total estimated resources. The disequilibrium correction factor calculated for core samples of different boreholes ranges from 1.29 to 1.47 of eU₂O₂ (Table 5).

Conclusion

The disequilibrium studies on the mineralised samples from the boreholes of the Koppunuru deposit has indicated:

1. Presence of strong disequilibrium in favour of parent uranium, with average value of 1.41.

2. DF is nearly same in the mineralisation hosted by both basement granites and Banganapalle quartzite.

3. Presence of disequilibrium in the mineralised zone implies an

S. No.	BH. No.	No. of samples	DF
1	KPU/57	9	1.64
2	KPU/68	2	1.06
3	KPU/79	10	1.2
4	KPU/82	2	1.57
5	KPU/110	14	1.37
6	KPU/118	9	1.36
7	KPU/124	24	1.29
8	KPU/131	4	1.28
9	KPU/138	20	1.46
10	KPU/144	38	1.32
11	KPU/147	13	1.33
12	KPU/152	10	1.36
13	KPU/163	37	1.34
14	KPU/166	20	1.49
15	KPU/172	6	1.62
16	KPU/181	1	1.03
17	KPU/184	14	1.45
18	KPU/247	10	1.86
19	KPU/252	7	1.85
		Total=250	Average=1.41

Page 6 of 7

 Table 3:
 Disequilibrium factor of Granites borehole core samples (below unconfirmity), Koppunuru area, Guntur District, Andhra Pradesh.

S. No.	BH. No.	No. of samples	DF
1	KPU/23	8	1.17
2	KPU/68	3	1.75
3	KPU/76	7	1.47
4	KPU/79	23	1.38
5	KPU/82	3	1.18
6	KPU/93	11	1.27
7	KPU/108	5	1.44
8	KPU/112	28	1.35
9	KPU/118	22	1.25
10	KPU/123	17	1.4
11	KPU/124	16	1.3
12	KPU/131	23	1.28
13	KPU/138	93	1.24
14	KPU/144	12	1.36
15	KPU/147	3	1.36
16	KPU/152	21	1.2
17	KPU/153	13	1.27
18	KPU/255	6	1.37
19	KPU/256	16	1.44
20	KPU/163	28	1.3
21	KPU/166	22	1.39
22	KPU/169	12	1.36
23	KPU/172	20	1.33
24	KPU/180	28	1.88
25	KPU/181	16	1.66
26	KPU/184	52	1.51
27	KPU/226	7	1.32
28	KPU/230	10	1.43
29	KPU/242	13	1.29
30	KPU/247	45	1.51
31	KPU/252	9	1.79
32	KPU/255	28	1.46
		Total=620	Average=1.40

 Table 4: Disequilibrium factor of Banganapalle quartzite /grit borehole core samples (above unconformity), Koppunuru area, Guntur district, Andhra Pradesh.

J Geol Geophys, an open access journa ISSN: 2381-8719

Range eU ₃ O ₈ (ppm)	No of Samples	Avg. U ₃ O ₈ (ppm)	DF=U/Ra	
90-200	412	162	1.47	
201-400	204	332	1.29	
401-600	49	613	1.32	
601-800	33	953	1.39	
801-1000	20	1264	1.45	
1001-1500	53	1711	1.4	
1501-2000	28	2275	1.33	
2001-2500	21	3067	1.42	
2501-3000	9	3480	1.3	
3001-4000	18	4572	1.35	
4001-8500	22	7817	1.39	

Table 5: Disequilibrium factor core samples with different eU_3O_8 ranges of Koppunuru area, Guntur district, Andhra Pradesh.

upward correction in the ore grades, calculated based on total gamma log, by a factor of 1.41. Thus, an increase in grade and tonnage of the total estimated resources in Koppunuru deposit is indicated.

Acknowledgment

The authors are grateful to Shri. Parihar PS, Director, AMD, Hyderabad for giving permission to publish this paper. They also extend sincere thanks to Shri. Nanda LK, Additional Director (OP-III) and Dr. A.K. Chaturvedi, Additional Director (R&D), AMD, Hyderabad for their suggestions and encouragement.

References

- 1. Ritch J (2010) The necessity of nuclear power: A global and environmental imperative. WNA, 1-16.
- 2. IEA (2010) International Energy Agency.
- 3. IEA (2014) International Energy Agency.
- Spadaro JV, Langlois L, Hamilton B (2000) Greenhouse gas emissions of electricity generation chains: Assessing the difference. IAEA Bull 42: 19-24.
- 5. WNA (World Nuclear Association) (2011) World nuclear power reactors and uranium requirements (updated 06.02.2011).
- Bhaumik BK, Bhattacharya T, Acharyulu AAPSR, Srinivas D, et al. (2004) Principles of radiometry in radioactive metal exploration (First Edition). Physics Lab., Eastern Region, AMD, Jamshedpur, India 35: 313.
- Gupta S, Vimal R, Banerjee R, Ramesh Babu PV, Parihar PS, et al. (2012) Geochemistry of uraniferous Banganapalle sediments in the Western part of Palnad Sub-basin, Andhra Pradesh: Implications on provenance and palaeoweathering. Gond Geol Magz Spl 13: 1-14.
- Daly J, Urquhart DF, Gibson MR (1956) Assaying of radioactive rocks and ores. Bureau Min Resour Geol Geophys Bull No 31: 43.
- Rosholt JN Jr. (1958) Radioactive disequilibrium studies as an aid in understanding the natural migration of uranium and its decay products. In: Proc of UN Int Conf. "The Peaceful Uses of Atomic Energy", Pap. QIC 183, UN 772.
- Bowie SHU, Davis M, Ostle D (1972) Uranium prospecting handbook: Proceedings of a NATO-sponsored Advanced Study Institute on methods of prospecting for Uranium minerals, London. Inst Min Metal 1-346.
- 11. Nagaraja Rao BK, Rajurkar ST, Ramalinga Swamy G, Ravindar Babu B (1987)

Stratigraphy, structure and evolution of the Cuddapah Basin. Mem Geol Soc India $6\colon 33\text{-}86.$

- 12. Banerjee R, Bahukhandi NK, Rahman M, Achar KK, Ramesh Babu PV, et al. (2012) Lithostratigraphic and radiometric appraisal of deeper parts of Srisailam and Palnad Sub-basins in Kottapullareddipuram Achchammagunta-Rachchamallepadu area, Guntur district, Andhra Pradesh. Expl Res Atm Miner 22: 55-69.
- Vimal R, Banerjee R, Gupta S, Krishna V, Achar KK, et al. (2012) Geochemistry and Sr and Pb isotope systematics of basement granitoids from North and West of Palnad Sub-basin, Guntur and Nalgonda districts, Andhra Pradesh. J Appl Geochem 14: 295-315.
- Jeyagopal AV, Kumar P, Sinha RM (1996) Uranium mineralisation in the Palnad sub-basin, Andhra Pradesh. Curr Sci 71: 957-959.
- 15. Jeyagopal AV, Deshpande MSM, Gupta S, Ramesh Babu PV, Umamaheswar K (2011) Uranium mineralization and association of carbonaceous matter in Koppunuru Area, Palnad sub-basin, Cuddapah basin, Andhra Pradesh. Ind Mineral 45: 100-111.
- Verma MB, Gupta S, Singh RV, Latha A, Maithani PB, et al. (2011) Ore body characterization of Koppunuru uranium deposit in Palnad sub-basin, Guntur District, Andhra Pradesh. J Min Soc 45: 51-61.
- Ramesh Babu PV, Banerjee R, Achar KK (2012) Srisailam and Palnad Sub-basins: Potential geological domains for unconformity-related uranium mineralisation in India. Expl Res Atm Miner 22: 21-42.
- Bruneton P, Cuney M, Dahlkamp F, Zaluski G (2014) IAEA geological classification of uranium deposits. In: International Symposium on "Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental issues". URAM 2014, IAEA–CN–216: 12-13.
- Thomas PK, Thomas T, Tomas J, Pandian MS, Banerjee R, et al. (2014) Role of hydrothermal activity in uranium mineralisation in Palnad Sub-basin, Cuddapah Basin, India. J Asian Earth Sci 91: 280-288.
- Acharyulu AAPSR, Sreenivasa Murthy B, Bhaumik BK (2004) Enrichment characteristics of radioelements in various types of rock from Sambalpur district, Orissa, India. J Ear Plan Sci 113: 321-352.
- 21. Gilmore GR (2008) Practical Gamma Ray Spectrometry, 2nd ed., John Wiley & Sons, 318.
- 22. Guibert P, Lahaye C, Bechtel F (2009) The importance of U-series disequilibrium of sediments in luminescence dating: A case study at the Roc de Marsal Cave (Dordogne, France). Rad Measure 44: 223-231.
- Ghosh PC, Bhatnagar AS (1972) Some studies of the radioactivity in minerals, ores and soil, with special reference to Radon. Unpub. Ph.D. Thesis, IIT, Delhi.
- Shrivastava HB, Koteswara Rao V, Singh RV, Rahman M, Rout GB, et al. (2015) Uranium series disequilibrium studies in chenchu colony, Guntur District, Andhra Pradesh, India. Appl Radiat Isot 105: 163-169.
- 25. Eichholz GG, Hilborn JW, McMohan C (1953) The Determination of Uranium and Thorium in Ores. Can Jour Phy 31: 613-628.
- 26. Grasty RL (1979) Gamma Ray Spectrometric Methods in Uranium Exploration - theory and Operational Procedures; in Geophysics and Geochemistry in the Search for Metallic Ores. Geol Sur Canada, Econ Geol Rep 31: 147-161.
- 27. Banerjee R, Singh RV, Vimal R, Paneerselvam A, Verma MB, et al. (2014) Environmental baseline data of Koppunuru Uranium deposit and its environs, Guntur district, Andhra Pradesh. In: Annul Conf Vol. of: INSAC-2014: Technological Advances in Exploration, Mining and Manufacturing of Nuclear Materials: 113-116.