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Abstract
Multiple MRI modalities including Diffusion Tensor Imaging (DTI), perfusion MRI, in vivo MR Spectroscopy (MRS), 

volumetric MRI, contrast-enhanced MRI, and functional MRI have demonstrated abnormalities of the structural and 
functional integrity as well as neurochemical alterations of the HIV-infected central nervous system (CNS). MRI has 
been proposed as a robust imaging approach for the characterization of the stage of progression in HIV infection. 
However, the interpretation of the MRI findings of HIV patients is complicated by the fact that these clinical studies 
cannot readily be controlled. Simian immunodeficiency virus (SIV) infected macaques exhibit neuropathological 
symptoms similar to those of HIV patients, and are an important model for studying the course of CNS infection, 
cognitive impairment, and neuropathology of HIV disease as well as treatment efficacy. MRI of non-human primates 
(NHPs) is of limited benefit on most clinical scanners operating at or below 1.5 Tesla because this low field strength 
does not produce high-quality images of the relatively small NHP brain. Contemporary high field MRI (3T or more) for 
clinical use provides impressive sensitivity for magnetic resonance signal detection and is now accessible in many 
imaging centers and hospitals, facilitating the use of various MRI techniques in NHP studies. In this article, several 
high field MRI techniques and applications in macaque models of neuroAIDS are reviewed and the relation between 
quantitative MRI measures and blood T-cell alterations is discussed. 
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Introduction
HIV-associated central nervous system (CNS) disorders have been 

investigated widely with diffusion tension imaging (DTI), perfusion 
MRI, in vivo Magnetic Resonance Spectroscopy (MRS), functional MRI, 
magnetization transfer imaging, and contrast-enhanced MRI [1-7]. 
These studies demonstrate that MRI is a robust non-invasive approach 
in studies of HIV/AIDS patients. Abnormalities of MRI measures are 
more frequent in demented patients than in non-demented ones. The 
interpretation of these MRI measures as surrogates for stage of the 
disease progression is complicated, however, because these clinical 
studies cannot readily be controlled for route of infection, viral strain, 
or severity of disease. Simian immunodeficiency virus (SIV) infected 
macaque model exhibits neuropathological symptoms similar to those 
of HIV+ patients, and provides a valuable platform for studying the 
course of infection, cognitive impairment, and neuropathological 
sequelae of HIV disease in AIDS vaccine development [8-16]. In 
addition, the macaque model allows the MRI examination to be carried 
out with much higher image resolution and with multiple modalities 
in a single session. Dedicated monkey research scanners with high-
strength gradient inserts are preferred for macaque neuroimaging [17], 
but such high-field scanners are available in only a few research centers 
worldwide. 

One of the hallmarks of the progression of AIDS is the extensive 
depletion of CD4+ T cell subsets, especially in untreated HIV patients 
[18]. A massive loss of memory-phenotype CD4+ T cells was observed 
in the intestine in early stages of infection [18,19]. CD4+ T cell 
count indicates the stage of HIV disease and is the most significant 
predictor of the disease progression. CD8+ T-cells provide a major 
immunological defense against HIV infection and their proliferation is 
driven by the virus load and associated with the state of inflammation 
in HIV infection [20-22], and neurological dysfunctions is correlated 
with the expansion of CD8+ T cells in the SIV infected brain [21]. Also, 
the CD4/CD8 ratio has been proposed as a potential biomarker for the 
stage of HIV infection [23]. A significant correlation between the MRI 
measures in CBF and DTI and the blood T-cell alterations has been 
demonstrated in a longitudinal study of SIV-infected macaques [24].

In the present article, the use of several MRI techniques in SIV-
infected macaque neuroimaging at high field is reviewed and the 
relationship between these quantitative imaging measures and the 
CD4+ and CD8+ alterations in SIV Infection is discussed.

Equipment and Animal Handling
MRI scanner

Current whole body clinical MRI scanners have 60-cm or larger 

more informative neuroanatomical studies which provide new insights 
into the brain’s structure and function.

Whole-body clinical scanners are accessible in most medical 
centers or hospitals and most offer adequate space to accommodate any 
special requirements of a scan setup. Such clinical scanners have been 
employed in many macaque studies. However, most of them operate 
at or below 1.5 Tesla and thus provide a level of signal sensitivity that 
is suboptimal for macaque neuroimaging studies. In recent years, 
high field clinical MRI scanners (3T or greater) has become available 
in many centers. The increased field strength provides significantly 
improved signal sensitivity. The advanced MRI technologies facilitate  
nonhuman primate (NHP) neuroimaging investigation, resulting in 
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bore size and provide ample space to accommodate animals and 
equipments for a variety of experimental settings in NHP studies. This 
relatively large bore size facilitates animal handling and monitoring. 
Animals can be placed in either a supine position, or be placed in the 
scanner on the abdomen, in a “sphinx” position during scanning. 
Some commercial knee coils (such as Siemens CP extremity) can fit 
varying macaque head sizes very well for general imaging and MRS 
scans. Custom-built coils are also often employed to provide optimal 
performance for specialized studies. Because the MRI signal to noise 
ratio (SNR) increases with the magnet strength, high field or even 
ultra-high field MRI scanners are preferred for acquisition of the best 
possible images. 

The average macaque brain volume is about 100 cm3, less than one-
tenth that of a human brain. Since most clinical MRI pulse sequences 
and protocols are designed and hardcoded expressly for human brain 
imaging purposes, they must be reprogrammed and optimized to 
accommodate the smaller FOV and higher spatial resolution needed in 
macaque brain imaging.

Behavior tests and blood tests for T-cell counts

The neurological, behavioral, and cognitive similarity of the 
macaques to humans [25] can be exploited to evaluate possible 
cognitive sequalae to SIV infection. Toward this end, computer-based 
cognitive behavioral tests can be used to characterize the change of 
cognitive function in monkeys. Among the tests that can be performed 
are cued and uncued attention [26,27], Delayed Non-Matching-to-
Sample (DNMS) (both acquisition and memory performance with 
delays) [28,29]. Delayed Recognition Span-spatial condition (DRST-
spatial), and Spatial Reversal (SR) [30,31]. These tests are recognized 
measures of attention [26,27] and memory [30,31]. 

Animal immobilization, anesthesia, and physiology 
monitoring 

Also, the head restraint is able to provide space for the introduction 
of an endotrachael tube for the administration of isoflurane, an 
inhalated agent that produces rapid induction of and recovery from 
anesthesia. Monkeys are usually kept at ~1% isoflurane during 
scanning. Physiological parameters such as Et-CO2, inhaled CO2, 
O2 saturation, blood pressure, heart rate, respiration rate, and body 
temperature, must be monitored continuously and maintained in 
normal ranges during the entire scanning session. 

T1 and T2 Weighted Structural MRI
T1 and T2 weighted MRI provides excellent image quality and tissue 

contrast for structure segmentation to examine possible volumetric 
abnormalities of various brain structures. Cerebral atrophy is often 
observed in HIV+ patients with neurological symptoms [4,7,33,34]. An 

inverse correlation between ventricular size and neuropsychological 
function was found in previous CT study of AIDS patients [35]. 

In macaque models, such structural volume changes can be accessed 
before and after SIV inoculation from T1 and T2 weighted structural 
images. High resolution T1 and T2 weighted images of macaques are 
usually acquired with the 3D MP-Rage gradient-echo sequence and 
the fast spin-echo sequence respectively. The structural volumes can 
be estimated by manual tracing or by automatic image segmentation 
via FSL (www.fmrib.ox.ac.uk) for voxel-based morphometry (VBM) 
analysis or other atlas-guided specific segmentation software. Also, the 
standardized planimetry to measure the ventricle-brain ratio (VBR) 
and the bifrontal (BFR) and bicaudate (BCR) ratios can be used for 
estimation of cerebral atrophy [33,34]. Briefly, The VBR is defined as 
the ratio of the area of the lateral ventricles over the whole brain in the 
slice where the brain perimeter is maximal. The BCR is the ratio of the 
minimum inter-caudate distance over the corresponding whole brain 
width in the same slice. The BFR is the ratio of the distance between 
the lateral tips of the frontal horns over the corresponding whole brain 
width in the same slice. 

DTI 
DTI measures the magnitude and directionality of tissue 

water mobility and provides a non-invasive approach to access the 
microstructural features of the brain white matter tissue [38,39]. 
However, the DTI data acquisition is very vulnerable to motion, echo 
time, and field inhomogeneity (susceptibility artifacts). High magnetic 
field provides the requisite high SNR, but produces longer T1 and 
shortening of T2 and T2*. Therefore, strong gradients are required to 
achieve acceptable echo time (TE). In comparison with the gradient 
strength of up to 400mT/m in animal research scanners, the gradient 
insert in a clinical scanner typically provides only 40 mT/m per axis. 
Thus, the echo time in the single-shot EPI sequence can become 
too long and cause severe signal drop and image distortion in high-
resolution DTI of macaque brains. However, since the animal is usually 
anesthetized and immobilized during scanning, the multi-shot EPI 
pulse sequence can be utilized to reduce the echo time significantly in 
the high resolution DTI data acquisition of macaque brains. 

DTI has been extensively employed for studying CNS anatomy 
and pathology in AIDS and HIV patients [40-45]. Fractional 
Anisotropy(FA) is more sensitive than mean diffusivity (MD) and 
decreases significantly in regions such as splenium, genu, internal 
capsule, frontal lobes, parietal lobes, temporal lobes, and occipital lobes 
in both symptomatic and asymptomatic HIV patients [41,44,46-50]. 

In comparison with the numerous DTI studies in HIV patients 

Li et al. used this method to estimate the cerebral atrophy of the 
SIV-infected macaques [24]. No significant difference between any 
two different time points was observed during the study period, in 
agreement with those seen in asymptomatic HIV-1-infected patients 
[4,36]. However, the BFR, an index of cerebral atrophy, increased 
progressively with CD4+ depletion as indicated by a significant 
correlation with CD4+ T cell count during infection (Figure 1a). This 
finding is consistent with the result in HIV patients in which the 
frontopolar cortical thinning is significantly associated with lower 
CD4+ counts [37]. This result suggests that the cerebral atrophy may be 
still occurring during the asymptomatic stage, even though no obvious 
volume changes are observed after the SIV infection in comparison 
with that of the pre-inoculation baseline.

In order to monitor disease progression and the correlation with 
behavior and MRI measures, blood samples can be collected on the 
day before the scan. These can then be analyzed for counts of CD4+ and 
CD8+ T-cell subsets, by flow cytometry [12,32]. 

Even if subjects are deeply anesthetized, the physiological motions 
can often produce motion artifacts on MRI images. This can be 
prevented by the use of a head holder to immobilize the animal. The 
holder in use at our facility has plastic ear bars and a tooth bar, and 
is designed to permit the anesthetized animal to breathe freely during 
the scan. 

http://www.fmrib.ox.ac.uk
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Perfusion MRI 
Cerebral Blood Flow (CBF) can be measured with several 

neuroimaging techniques including PET, SPECT, and MRI. Of these, 
Arterial Spin-labeling (ASL) in the context of MRI uses endogenous 
arterial blood water as a freely diffusible tracer and is a non-invasive 
approach for the quantitative measurement of CBF [51-53]. ASL with 
a separate labeling coil can achieve high SNR CBF maps of macaques 

with reduced RF exposure but requires additional hardware [54]. In 
contrast, the amplitude-modulated continuous ASL (CASL) technique 
does not need additional hardware setting and can be readily used for 
CBF data acquisition of humans [55]. The CASL technique has been 
explored and optimized for CBF mapping of SIV macaques [24]. 
The resting CBF maps of SIV macaques with the CASL perfusion 
measurement at high spatial resolution (voxel size=1.5×1.5×1.5 mm3) 
have been demonstrated. 

CBF has been utilized sparsely in HIV/AIDS researches. Abnormal 
CBF has been observed in a few studies of HIV patients and proposed 
as a noninvasive biomarker for HIV-associated CNS damage, 
perhaps with the potential for classifying or predicting the degree of 
neurocognitive impairment [56-58]. The relation between regional 
CBF abnormality and pathological and neurological alteration remains 
unknown. 

The progressive CBF changes during SIV infection have been 
explored in one recent study of SIV macaques [24]. It has been 
demonstrated that CBF in caudate and inferior medial parietal cortex 
of SIV-infected macaques was reduced significantly. Reduction of 
CBF in prefrontal cortex was nearly statistically significant, probably 
due to the small sample size. In addition, the progressive change of 
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Figure 1: Multiple MRI measures correlate with CD4+ counts and/or CD4/CD8 ratio with P-values <0.05 confidence in a SIV-infected macaque study (Li et al. 2011). 
(a) brain atrophy index bifrontal ratio (BFR) correlates with CD4+ T cell counts (R2=0.20); (b) Fractional Anisotropy (FA) of whole brain correlates with CD4+ T cell 
counts (R2=0.21); (c) FA of splenium correlates with CD4+ counts (R2=0.22); (d) FA in frontal white matter and genu correlates with  CD4/CD8 ratio (R2=0.17 and 0.18); 
(e) Cerebral Blood Flow (CBF) in caudate, parietal and prefrontal cortex correlates with CD4+ counts (R2=0.21, 0.29, and 0.25) (f) CBF in caudate and parietal cortex 
correlates with CD4/CD8 ratio(R2=0.21 and 0.50).  

over a decade, DTI was just explored recently in one study of SIV 
macaques [24], in which, a two-segment double spin-echo EPI 
sequence was used for DTI data acquisition at high spatial resolution 
(voxel size=1.5×1.5×1.5 mm3). The DTI results of SIV macaques 
indicate that the whole brain FA is reduced significantly after SIV 
infection, in agreement with the previous results in HIV patients. In 
addition, longitudinal FA changes of the whole brain, splenium, genu, 
and frontal white matter in SIV macaques, are correlated significantly 
with the CD4+ T cell counts and/or CD4:CD8 ratio during infection, as 
illustrated also in figure 1b, 1c and 1d, suggesting that the longitudinal 
changes in FA are associated with the immune dysfunction during the 
acute and chronic SIV infection. Also, these results suggest that DTI is 
a robust and sensitive technique to evaluate neuroanatomical changes 
in both HIV+ patients and SIV macaques.
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CBF in caudate and parietal cortex correlated significantly with CD4+ 
counts and with the CD4/CD8 ratio during infection (Figure 1e and 
1f), suggesting that regional CBF in the specific structures is associated 
with the immune dysfunction during the SIV infection. Also, the CBF 
results in SIV monkeys are consistent with previous reports in HIV 
patients [58-63]. 

In vivo Proton MRS
MRS provides a non-invasive approach to measure neurochemical 

alterations associated with the inflammatory process during HIV 
infection and has been used extensively in studies of HIV or AIDS 
patients [59,64-75]. Metabolite abnormality was usually observed in 
demented and/or symptomic HIV patients. The degree of cerebral 
metabolite disturbance in HIV patients is strongly associated with 
reduced cortical and subcortical volumes [76]. 

functional MRI, ASL-based perfusion, and susceptibility weighted 
imaging (SWI). The SNR of ASL-based perfusion-weighted images are 
further improved because of the elongated blood water T1 at high field. 
However, technical challenges on magnetic field in homogeneities, RF 
coils, RF exposure, and increased T1 and shortening T2 of tissue, etc, 
still remain to be solved in ultra-high field MRI. 

Cerebral metabolic abnormalities in SIV-infected monkeys 
has been examined by using localized point-resolved spectroscopy 
(PRESS) sequence with CHESS water suppression [77-79] or ex vivo 
MRS [80-83]. During acute SIV infection, significant reduction of 
NAA/Cr and Cho/Cr was observed in about 13 days and 27 days after 
inoculation, respectively, and the change of Cho/Cr was correlated 
with plasma viral load [84]. Cho/Cr in frontal lobe or NAA/Cr in basal 
ganglia was found correlated with plasma viral load [85]. The findings  
are similar to those noted in HIV-infected human brains. The NAA/Cr 
ratio is negatively correlated with the SIV CNS disease severity in the 
SIV-infected macaque model of encephalitis [78]. In particular, rapid 
decline in NAA/Cr ratios has been demonstrated in SIV macaques with 
CD8+ depleted [86]. The effect of the chronic morphine administration 
on SIV macaques has been investigated in the SIV macaque model, and 
the ex vivo MRS findings indicate the protection of chronic morphine 
against the neurotoxic effect of AIDS [82]. Also, the neuroprotection 
by oral minocycline was demonstrated in recent MRS study of the 
accelerated SIV macaque model [87]. 

Those metabolite abnormalities are not usually seen in the 
patients who are neurologically asymptomatic or with mild cognitive 
impairment [88]. In recent MRS study of SIV macaques, significant 
cerebral metabolite alteration was observed in a longitudinal MRS 
study of neurologically asymptomatic SIV macaques [89]. Also, the 
progressive change of NAA and glutamate/glutmine (Glx) in basal 
ganglia correlated with the CD8+ T cell percentage during the SIV 
infection. It is suggested that the unknown infection history and/or 
medication treatment may complicate the examination of in vivo MRS 
in HIV patients with no or mild cognitive impairment. In sum, in vivo 
MRS in asymptomatic macaque models may be of particular value in 
investigating early nervous system involvement in HIV patients with 
no or mild cognitive impairment. 

High Field and Ultra-High Field MRI and Parallel 
Imaging Techniques

MRI is a non-invasive and sensitive imaging modality and being 
increasingly used in preclinical examination and clinical diagnosis. 
Two revolutionary advances in the MRI techniques emerged in recent 
years. These are (1) the development and application of high field and 
ultra-high field MRI, and (2) the advent of parallel imaging techniques.

High field (3T or more) and ultra-high field (7T or more) MRI offers 
increased SNR which benefits many applications using conventional 
and quantitative MRI methods. These include high resolution T1 
and T2 weighted structural imaging, in vivo MR spectroscopy, DTI, 

Parallel imaging technique combines multiple receiving coils 
in a phased array with unique imaging reconstruction algorism to 
reduce the scan duration significantly. Most imaging modalities such 
as regular anatomical T1 and T2 weighted images benefit substantially 
from this technique in terms of improved image quality and increased 
scanning speed. In particular, DTI measurement is greatly improved  
by using the novel parallel imaging technique [90]. In our experience, 
a four- or eight-channel phase-array volume coil can meet general 
needs of macaque brain imaging. The combination of high field and 
parallel imaging techniques could facilitate the use of various MRI 
measurements of macaque brain imaging with excellent image quality 
and sensitivity. 

Discussion and Conclusions 
HIV preferentially infects the sub-cortical structures. Although it 

perhaps enters the CNS as early as the initial systemic infection [91], 
symptomatic cognitive impairment typically occurs in late stages of 
HIV disease when most abnormalities in quantitative MRI measures 
are observed. However, the specific symptoms vary from person to 
person, and most MRI measures are not sensitive in the examination 
of HIV patients with no or mild cognitive impairment, except for DTI 
whose robustness has been demonstrated in some studies of non-
demented HIV patients [41,46,48].

SIV-infected macaques offer an ideal model for using clinical MRI 
scanners to characterize the CNS injury during SIV infection and the 
response to treatment under controlled condition. Also, a particular 
advantage of the macaque model is that it permits the use of high quality, 
multi-parameter MRI measurements in a single session to examine 
the CNS injury non-invasively. DTI, CBF, and MRS measurements 
of SIV macaques have demonstrated their robustness and efficacy to 
access and evaluate the CNS injury during SIV infection in previous 
studies. The CBF and metabolite abnormalities in basal ganglia of SIV 
macaques suggest basal ganglia may be more vulnerable in SIV and 
HIV infection. 

HIV attacks and damages the human body’s immune system 
in which the CD4+ T-cells play a critical role. Experimental and 
clinical evidence has demonstrated that CD4+ T cell depletion and 
accumulating CD8+ T lymphocytes are the most significant predictor 
of the disease severity [92]. CD4+ and CD8+ counts are typically used to 
access the degree of immune impairment in HIV patients. Even though 
clinical studies have found that CD4+ levels were associated with 
abnormalities on perfusion MRI, DTI, brain volumetric measurement 
in HIV patients, the relations between the CD4+ and/or CD8+ T cells 
and neuroimaging findings have not been conclusively identified. 

The MRS results of SIV macaques indicate the cerebral metabolites 
are altered evidently in two weeks after SIV inoculation. Similarly, 
abnormal changes in FA and MD are observed also during acute SIV 
infection. Meanwhile, the correlation between the longitudinal DTI, 
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