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Introduction
Committee machines (CM) or ensembles are a machine learning 

method that each of its members can do the same task. The motivation 
behind introducing the CM is to aggregate a set of experts so that 
this constructed model improves the generalization performance 
in comparison to each member alone [1]. Numerous academic and 
experimental studies have been done in ensemble methods that 
significantly show that this approach will be effective if their members 
are both diverse and accurate [1,2]. Diversity between experts is a 
very important parameter that is not necessarily independent of their 
accuracy and essentially there is a trade-off between them [3]. In a 
CM, the expectation is that distinct experts converge to different local 
minima on the error surface, and the overall output improves the 
performance [4,5]. Naturally, a CM includes two phases; first, creating 
individual members and then a combination of output from the created 
experts. Some authors (Muoz et al. [6], Caruana et al. [7] Fan et al. [8] 
and Tsoumakas et al. [9]) have considered an additional intermediate 
phase. The goal of this additional phase is to reduce the CM size before 
the combination stage, which this is called expert/ensemble pruning. A 
CM structure with the three mentioned stages is illustrated in Figure 
1, whereby it consists of multiple experts and a single combiner. In 
homogeneous models, the individuals are created from different 
implementations of the same learning algorithm [1]. Bagging [10] and 
boosting [11] are two popular homogeneous methods. In heterogeneous 

models, the individuals are obtained by running different learning 
algorithms on the same dataset. The last stage of building a CM or 
ensemble is the combination of techniques. Many investigations have 
been done to design suitable fusing methods to combine the experts 
output and produce final result such as; simple averaging [12], majority 
voting [13], ranking [13,14], weighted averaging [15], fuzzy integrals 
[16] and weighted majority voting [17]. Several Artificial Intelligence
(AI) techniques have been applied by many researchers to predict
reservoir oil properties by utilizing conventional well log data. This
is due to the expensive cost of traditional prediction methods in oil
exploration. Permeability is one of the fundamental and effective
reservoir oil properties, which is defined as the ability of porous rock to 
transmit fluid. A coring method based on rock samples in the laboratory 
and well tests are direct methods to determine permeability which
are costly and time consuming [18]. Data sampling based on coring
methods also does not provide a continuous profile along the depth
of the formation. Therefore, permeability prediction based on well log
data, which is much less costly than direct methods, is a significant
research area in petroleum engineering. Several AI techniques such
as neural networks, fuzzy logic and committee machines [19-37] have
been used for permeability prediction. In this paper, we propose a new
framework based on expert pruning on committee neural network to
predict permeability in the Ahvaz oil field of Iran.

Related work in Expert Pruning
As mentioned above, the constructed CMs are sometimes 
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Figure 1: Committee machine with k members and three stages.
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Figure 2: Cross plots showing the relationship between core permeability and porosity, NPHI, RHOB, DT, SGR, PEF, PHIE and RT.
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unnecessarily large and introduce some limitations in predictive 
performance. Therefore, in a full set of experts, maybe there are some 
weak ones that can have negative effects on overall performance. 
Pruning some of these members while preserving a high diversity 
among the experts is an efficient technique for increasing the predictive 
performance. The benefits of ensemble pruning in improving efficiency 
and producing predictive performance are well known. In fact, the 
ensemble pruning problem is similar to an optimization problem, 
in which the objective is to find the best subset of individuals from 
the original ensemble. To the best of our knowledge, for a set with T 
member, there are (2 T−1) subsets, so in the moderate sized ensemble, 
the exhaustive search becomes intractable. In Zhou et al. [38], the 
authors presented a pruning approach based on a genetic algorithm 
named GASEN (Genetic Algorithm based Selective Ensemble). In their 
method, the individual members with a weight greater than a present 
threshold (λ) could be selected to join the sub-ensemble and the others 
are dropped. In Brown et al. [39], the authors proposed a method for 
managing the diversity based on decomposition of bias-variance-
covariance in regression ensembles. They also showed that there is a 
relationship between the error function and the negative correlation 
algorithm [40] and this method can be viewed as a framework for 
application on regression ensembles. Clustering is another approach 
proposed by Bakker and Heskes [41] for ensemble pruning. In 
this method, experts are divided into a number of sets according to 
the similarity of their outputs, and then a single network is selected 
from each cluster. This method does not guarantee that the selected 
experts improve the generality prediction of the ensemble, but it is 
more suitable for qualitative analysis and introduces a new method to 
ensemble pruning. In Jafari et al. [42], the authors proposed a pruning 
method based on a genetic algorithm with a new error matrix.

The diagonal elements of the matrix measure individual squared 
errors while the off-diagonal elements correspond to correlation-like 
values. Finally, in their method, experts with a weight equal to one are 
selected as members of the final sub-CM. In this paper, we propose 
another pruning approach that is based on a diversity and accuracy 
trade-off based on Rooney’s method [43]. This proposed method is 
developed for predicting permeability from well log data with the aid 
of available core data.

Methodology
In petroleum industry, obtaining an accurate estimation of the 

hydrocarbon in place before exploration or production stages is the 
most important objective. Therefore, reliable prediction of reservoir 
characterization is very helpful for evaluating and designing any 
development plan for production from the field. The objective of our 
research is to introduce an intelligent system to predict permeability 
by utilizing the well log data in an un-cored interval of the same well 
or in an un-cored well of the same field. In this paper, we will introduce 
a new intelligent structure named Pruned Committee Neural Network 
(PCNN) with high accuracy, fast processing and low cost to predict 
permeability.

Input selection and data preparation

In this study, well logs and core data were collected from the Ahvaz 
fields of the National Iranian Oil Company (NIOC). The permeability 
derived core data for this study ranges from 0.002 to 1882.94 millidarcy. 
This causes complications when assessing the reliable performance in 
our prediction. To overcome this problem, we normalized it in the 
range of 0 to 1. Selecting suitable inputs with a stronger relationship 
to the target data plays an important role in model construction. The 

relationship between available well log data, which are porosity, neutron 
(NPHI), density (RHOB), sonic (DT), gamma ray (SGR), photoelectric 
(PEF), effective porosity (PHIE), formation true resistivity (RT) and 
normalized core permeability is illustrated in Figure 2. As demonstrated 
in the figure, five well logs that are shown on the y-axis as input 
variables have a strong relationship (high correlation coefficient) with 
permeability as the output variable that is shown on the x-axis. We also 
have used another method to select stronger input data on the target. 
For this purpose, we applied the Mallows’ Cp statistic method to obtain 
the best fit for a regression model that is utilized using a Least Square 
(LS) algorithm. This method is suitable for feature selection, where 
a number of independent variables are available to predict certain 
dependent variables. By utilizing these methods, the NPHI, RHOB, DT, 
PEF and PHIE are selected as input data to predict permeability.

Porosity: Porosity is one of the essential properties of reservoir 
rocks and defined as a proportion of fluid-filled (oil, gas and water) 
space found within the rock. It is the fraction of a porous medium that 
is void space and measured as a fraction and poses no units. Porosity 
can be classified into two main categories which are; absolute and 
effective porosity. The first one means, the total porosity of the rock 
without considering the connections of the voids. Effective porosity 
means the voids that are interconnected.

Resistivity logs: Resistivity logs can be used to measure the ability of 
rocks to carry out electrical current such that sand filled with salt water 
has lower resistivity rather than sand filled with oil or gas. The primary 
aim of this logging method is to determine hydrocarbon saturation but 
the other usages of it are to determine porosity, permeability, lithology 
and fracture zones.

Gamma ray log: This logging tool measures radiation omitted by 
naturally occurring potassium, thorium, and uranium in formation 
verses depth. Gamma ray log also known as shale log because the 
radioactive count in shale is higher than clean sand or carbonates. This 
logging tool is suitable to determine bed thicknesses, mineral analysis, 
correlation between wells and etc.

Sonic log: This type of logging is also known as acoustic or velocity 
log that is widely used for porosity logs to quantitative interpretation 
of hydrocarbon saturation. This log is based on measuring the sound 
waves’ speed in travel through 1 m of subsurface formations. This 
logging tool also is used for many other purposes such as delineate 
fractures and indicating lithology, determining integrated travel time, 
secondary porosity, mechanical properties, acoustic impedance, quality 
of cementation behind the formation and detecting over-pressure.

Density log: Density log is another logging tool to determine 
porosity especially in shale that reacts to variation of the specific 
formation gravity. This tool emits neutrons into the rock and measures 
the back-scattered radiation that is received by the detector in the 
instrument. Density log can also be used to determine lithology, gas 
detection, estimating mechanical properties, evaluation of shaly sands 
and etc.

Neutron log: The third significant tools to determine formation 
porosity is neutron log. This log has a radioactive source, and measures 
the reaction energy between emitted and detected neutrons back to the 
tool. When the emitted neutrons crashed with the hydrogen’s nucleus, 
the most emitted energy will be lost. Therefore based on the hydrogen 
index, apparent neutron porosity can be determined. The neutron logs 
almost in combination with other logs such as density or sonic logs can 
be used to determine porosity, volume of shale, matrix type, lithology, 
formation fluid type and etc.
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Permeability: Permeability is one of the fundamental and effective 
reservoir properties which are defined as the ability of porous rock 
to transmit fluid. It is commonly measured in darcy (d) or millidarcy 
(md). Permeability can be obtained by direct and indirect methods. 
Coring method based on rock samples in laboratory and well tests 
are direct methods and indirect methods are based on well logs data 
[18]. The data sampling based on coring methods does not provide a 
continuous profile along the depth of the formation. However, the two 
mentioned direct methods provide the most

reliable permeability values of a formation but they are costly and 
time-consuming. Therefore, permeability prediction based on well 
logs data which are much less costly compared to direct methods 
is a significant research area in petroleum engineering. Intelligent 
techniques are suitable research methods in petroleum engineering 
because finding an explicit relation between rock permeability and well 
log data parameters are impossible.

Creating the CM members
The first step of the method is to build a set of ten experts based 

on Feed Forward Neural Networks (FFNN) with different training 
algorithms. All of these algorithms use a back propagation technique 
to adjust the weights for getting the optimum performance, which 
is usually minimum MSE. For this purpose, we employed ten high-
performance algorithms that converged faster than the others. They 
are variable learning rate BPNN (GDA, GDX), resilient BPNN (RP), 
Conjugate Gradient (CGF, CGP, CGB, and SCG), Quasi-Newton 
(BFG, OSS) and Levenberg-Marquardt (LM). The numbers of neurons 
in input and output layers are exactly equal to the number of inputs 
and outputs parameters respectively. However, the number of neurons 
in hidden layers depends on the problem in hand which in our study 
obtained by trial and error processes to get the best performance based 
on MSE and R2. Finally, the best architecture is selected as 5-X-1 for 
permeability prediction. The symbol X means the different number 
of neuron in hidden layer for different training algorithm. The value 
5 means the number of input layer and 1 means the number of output 
layer in NN. The other important parameter that we had to determine 
before training the networks was the stopping criteria. During the 
training of a neural network, over fitting problem may occur. It indicates 
that, MSE is very small for training data and is very high for the new 
(test) data (i.e., previously unseen data). This means that, the network 
has memorized the training data and could not learn how to generalize 
to new situations. There are some ways to overcome the cover fitting 
problem such as using large enough networks, increase the size of the 
training set, regularization and early stopping [44]. The early stopping 
is a default generalization method for the multilayer FFN in the Matlab 
neural network toolbox. In this method, the data samples are divided 
into three sets, which are training, validation and test sets. In each epoch 
of the training process, the MSE on the validation set is monitored and 
will be stopped when the validation error increases. The training sets 
are required for updating the weight between the connected neurons 
in all layers. Moreover, the testing sets are used to test how successfully 
the network learned to predict the new data, which are not used during 
the learning process.

Expert pruning

The constructed CMs are sometimes unnecessarily large and 
provide some shortcomings in the model which requires extra memory, 
a high computational cost and sometimes has negative effects on overall 
performance due to the weak predictive performances of some experts. 
One of the significant methods to reduce the mentioned limitation 

in a CM is to prune the committee members. Expert pruning, while 
preserving a high diversity among the individual members, is an 
efficient technique for increasing the predictive performance. In this 
stage, we used an equation that considers both accuracy and diversity. 
Assume D ={(xn, yn ); n =1,2,...,N} is the training data and the generated 
error for the j-th individual member based on the n-th input is set to Ej 
(xn ). The error function can be any differentiable function suitable to 
the problem domain such as squared error or absolute error. Therefore, 
the total error of the j-th member is calculated by equation (1), whereas 
equation (2) selects the expert with the minimum error among all K 
predictors.
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Finally, the accuracy of the l-th expert can be defined by equation 
(3).
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l sum

l

EAccu
E

=
                                                                                            (3)

To determine the diversity, we calculated the correlation between 
El and Ej as below; If corre(El ,Ej ) > λ for all l ≠ j , then we increase the 
value of the counter C by one unit and finally the total diversity of the 
l-th expert can be defined as equation (4).

Divl (N-C)/N for l= 1,…, K                                                                      (4)

Where λ є (0,1) is a user-defined constant value. Finally, we defined 
the l-th output of the ensemble by Fl (x) as Equation (5).

Fl (x)=(1-α)Accul Divl  for  l = 1,2,…,K      (5)

The pruning strategy is based on selecting k individuals of the K 
networks, which have the highest values of Fl (x), where α is ranged 
from 0 to 1 with a step size equal to 0.05.

Combination stage

After obtaining the optimum subset of experts, we have to 
combine them with an efficient method. In this paper, we have used 
the generalized reduced gradient (GRG) nonlinear method from MS-
Excel to obtain the optimal weight for each expert by minimizing the 
mean square error function (equation 6). This algorithm finds the best 
solution by searching over all the feasible areas that is created by the 
defined constraints which are shown in equation (7).
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where yij is the output of the j-th expert based on the i-th input, Ti 
is the target value for the i-th input, and N is the number of data points. 
In this paper we have used two evaluation measures to compare the 
performance of different techniques, namely the correlation coefficient 
(R2) and MSE, which are defined in equations (8) and (9) respectively. 
The correlation coefficient is a quantity that gives the quality of a least 
squares fitting between two original data T and Y (equation 9).
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Figure 3: A scatter plot and R2 value of permeability prediction by different learning algorithms and measured by core samples.
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Results and Discussions
The original data (917 data points) were divided into a training 

set (550 samples), validation set (183 samples) and testing set (184 
samples) for the whole of the training algorithms. After a few retraining 
iterations, the best performances were selected for each method and 
finally utilized for test data to predict our target, which was based on 
the value of MSE and R2. The results of testing data for all experts to 

predict permeability are shown in Figure 3 and Table 1. As shown in 
the Table 1, about seven experts have R2 greater than 0.9 and MSE less 
than 0.0015, that it means a very good performance for permeability 
prediction. By comparing the implementation results listed in the table, 
the lowest MSE and highest R2 are obtained using the Broyden-Fletcher-
Goldfarb-Shanno Quasi-Newton (BFG) algorithm. The values of Fl (x), 
as mentioned in equations (1)-(5), for all experts based on testing data 
with different α are calculated and illustrated in Table 2. The value of 
λ is obtained by using a trade-off between accuracy and diversity and 
is considered equal to 0.6. There are two main approaches in literature 
related to the size of the final sub-CM. The methods are fixed percentage 
size and dynamic selection. The first one will be defined by the user, and 
the second one is based on the predictive performance of the different 
subsets that were encountered during the search process from the first 
to last of the individual members. In this study, we applied the proposed 
method for fixed predefined k members that started from one and the 
other experts are added sequentially until the predictive performance 

Experts BFG CGB CGF CGP GDA GDX LM OSS RP SCG
R2 0.93 0.918 0.908 0.912 0.872 0.896 0.921 0.893 0.922 0.912

MSE 0.001 0.0012 0.0014 0.0013 0.0018 0.0015 0.0014 0.0016 0.0012 0.0013

Table 1: Performance of different learning algorithms to predict permeability individually.

Alpha BFG CGB CGF CGP GDA GDX LM OSS RP SCG
0 1 0.8658 0.7237 0.7904 0.5644 0.7022 0.7532 0.6337 0.8925 0.7626

0.05 0.96 0.8275 0.6926 0.7559 0.5462 0.6771 0.7405 0.607 0.8579 0.7295
0.1 0.92 0.7892 0.6614 0.7213 0.528 0.652 0.7279 0.5803 0.8232 0.6964

0.15 0.88 0.751 0.6302 0.6868 0.5098 0.6269 0.7152 0.5536 0.7886 0.6632
0.2 0.84 0.7127 0.599 0.6523 0.4916 0.6018 0.7026 0.5269 0.754 0.6301

0.25 0.8 0.6744 0.5678 0.6178 0.4733 0.5766 0.6899 0.5003 0.7194 0.597
0.3 0.76 0.6361 0.5366 0.5833 0.4551 0.5515 0.6772 0.4736 0.6847 0.5638

0.35 0.72 0.5978 0.5054 0.5487 0.4369 0.5264 0.6646 0.4469 0.6501 0.5307
0.4 0.68 0.5595 0.4742 0.5142 0.4187 0.5013 0.6519 0.4202 0.6155 0.4976

0.45 0.64 0.5212 0.4431 0.4797 0.4004 0.4762 0.6393 0.3935 0.5809 0.4644
0.5 0.6 0.4829 0.4119 0.4452 0.3822 0.4511 0.6266 0.3668 0.5462 0.4313

0.55 0.56 0.4446 0.3807 0.4107 0.364 0.426 0.6139 0.3402 0.5116 0.3982
0.6 0.52 0.4063 0.3495 0.3762 0.3458 0.4009 0.6013 0.3135 0.477 0.3651

0.65 0.48 0.368 0.3183 0.3416 0.3276 0.3758 0.5886 0.2868 0.4424 0.3319
0.7 0.44 0.3297 0.2871 0.3071 0.3093 0.3507 0.576 0.2601 0.4077 0.2988

0.75 0.4 0.2915 0.2559 0.2726 0.2911 0.3255 0.5633 0.2334 0.3731 0.2657
0.8 0.36 0.2532 0.2247 0.2381 0.2729 0.3004 0.5506 0.2067 0.3385 0.2325

0.85 0.32 0.2149 0.1936 0.2036 0.2547 0.2753 0.538 0.1801 0.3039 0.1994
0.9 0.28 0.1766 0.1624 0.169 0.2364 0.2502 0.5253 0.1534 0.2692 0.1663

0.95 0.24 0.1383 0.1312 0.1345 0.2182 0.2251 0.5127 0.1267 0.2346 0.1331
1 0.2 0.1 0.1 0.1 0.2 0.2 0.5 0.1 0.2 0.1

Table 2: The values of Fl (x) and α for all networks with different training algorithms.

Figure 4: A comparison of predicted permeability with ten experts versus MSE and R2.
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starts to decrease. By applying this technique, the best performance 
obtained is by k=3 for permeability prediction, which is about thirty 
percent of the total experts. Figure 4, shows MSE and R2 values of 
predicted permeability based on the different learning algorithms. 
Three highest values for each Fl (x) related to ten training algorithms 
are selected and marked in Table 2 with gray color. As demonstrated in 
the table, three sub-CMs have the highest value of Fl (x). The first sub-
CM includes (BFG, CGB and RP) for 0 ≤ α ≤ 0.2. The second sub-CM 
includes (BFG, LM and RP) for 0.25 ≤ α ≤1. Finally, the third sub-CM 
includes (BFG, GDA and RP) or (GDA, LM and RP) for α=1. The final 
weight for four mentioned sub-CMs is calculated based on the GRG 
nonlinear method mentioned in section 3.4. Then each expert has a 
weight value, and the output of the sub-CM is obtained by equation 
(10).

1 1 2 2 3 3SUB CMOUT w y w y w y− = + +∑                                         (10)

Table 3 and Figure 5 show a comparison between the results of the 
best expert (BFG) with lowest MSE and highest R2, four obtained sub-
CMs and the full CM with ten experts for permeability prediction. As 
demonstrated in the table, the second obtained sub-CM introduces the 
highest R2 and lowest MSE compared to others. The final weights for 
the three individual members of this pruned CM were 0.427, 0.322 and 
0.251 for BFG, LM, and RP respectively.
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