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Introduction
Multiple myeloma (MM), the second most common blood cancer, 

continues to be incurable, despite treatment advancement [1]. The 
communication between cancer cells and bone marrow niche drive 
the disease phenotypes and treatment response. Detailed analyses of 
both the cancer cells and niche are therefore most crucial to new target 
identification and a cure. Omics technology has helped expanding the 
knowledge of cancer biology and identifying new targets for therapy [2-
5]. Complementary with genetic analysis and gene expression profiling 
[6,7], proteomics allows the studies of global protein expression, post-
translation modifications, protein-protein interactions, and ultimately 
protein functions [8,9]. However, to date the advance of proteomics 
in MM research lags significantly behind the other mentioned 
technologies. Proteomic studies in myeloma has been largely limited to 
serum profiling [10-13]. The clinical applicability of the few published 
reports on cellular profiling of MM cells are hampered at least in part 
by the following: 1) the different techniques and statistical platforms 
used by different investigators, hence not allowing cross-validation; 
2) the lack of standard procedures for sample collection, storage, and 
processing, hence causing background noises and lowered sensitivity 
of the test; and 3) limited sample numbers, hence lacking statistical 
power for clinical correlation analysis. In addition, to date proteomic 
profiling in MM has mostly been based on cell lines in culture [14,15], 
which may not be representative of primary samples. Primary MM 
cells are not sustainable in culture due to their crucial reliance on bone 
marrow niche. Therefore, immediate sample processing is required to 
avoid background noises from cell apoptosis. 

Ideal methodology to isolate MM cells from other bone marrow cells 
should be simple, quick and yield high purity. MM cells do not tolerate 
thawing process. Once MM cells are isolated, storage methodology is 
required to maximize the protein quality for the subsequent proteomic 
analysis. The advance of proteomics in MM will be greatly facilitated by a 
standardized sample collecting procedure and established clinical database. 
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Abstract
Introduction: Quantitative proteomics approaches have provided insight into biomarkers of cancer and other 

diseases with high sensitivity, high specificity, and high analytical precision. Multiple Myeloma is an incurable, fatal 
blood cancers characterized by clonal expansion of plasma cells in the bone marrow. Current multiple myeloma 
proteomic research mainly focuses on serum biomarkers, not plasma cells, due to technical difficulties including a 
requirement for tumor cell isolation from bone marrow aspirates, tumor cell paucity and poor in vitro survival after 
isolation. 

Materials and methods: A global proteomic analysis was performed using sorted bone marrow plasma cells 
from normal donors and multiple myeloma patients and a large-scale quantitative mass spectrometry platform. A 
selected panel of up- and down-regulated proteins were validated by multiple-reaction-monitoring.

Results: We identified a panel of 18 up- and down-regulated potential biomarkers of multiple myeloma, which 
can be further clinically validated for their potential use as disease-specific biomarkers or signature molecules for 
monitoring disease progression. 

Conclusion: The study demonstrates a good example of using proteomics as a tool for the development of 
clinical biomarkers for diagnosis, prognosis, and drug target discovery.

Even though a tremendous effort has been made to improve 
proteomics technologies [16], there are still numerous challenges 
associated with even the most advanced technologies for analysis of 
global protein expression or post-translational modifications. These 
challenges include: 1) sensitivity, resolution, and accuracy of the 
instrument and ability to identify novel proteins; 2) the ability to 
achieve moderate to high throughput; 3) the ability to achieve broad 
coverage of protein mass and abundance (dynamic range); and 4) the 
ability to quantitatively analyze protein expression with high precision. 
At present, there is no consensus within the field of proteomics that any 
one technology can attain a complete and quantitative protein coverage 
of all proteins in a given tissue or biofluid. While two-dimensional 
gel electrophoresis (2DE) platform is still been used by some labs in 
proteomics research, its lack of ability to widen the protein dynamic 
range and its labor-intensiveness remain major disadvantages. One 
alternative approach to overcome this drawback is the non-gel-
based liquid chromatography mass spectrometry shotgun proteomic 
technology [15-22]. It provides a powerful tool to resolve and identify 
thousands of proteins from a complex biological sample. This approach 



Citation: Suvannasankha A, Crean CD, Leyes HM, Wongsaengsak S, Guihong Qi, et al. (2018) Proteomic Characterization of Plasma Cells from 
Patients with Multiple Myeloma. J Proteomics Bioinform 11: 008-016. doi: 10.4172/jpb.1000461

Volume 11(1) 008-016 (2018) - 9 
J Proteomics Bioinform, an open access journal 
ISSN: 0974-276X

is rapid and more sensitive, and it usually increases the protein dynamic 
range 4- to 5-fold as compared to 2DE [23]. The biggest advantage of 
this method is that it can be automated and has capability for large-
scale proteome analysis. Although some successes using isotopic 
labeling technology for protein quantification have been reported [24], 
it remains technically difficult to comprehensively characterize the 
global proteome due to the high costs of the labeling reagents and the 
nature of the methodology, e.g., proteins without certain amino acid 
residues cannot be labeled. In the past few years, the ion intensity-
based or spectral counting-based label-free quantitative approaches 
have gradually gained their popularity in this regard, concomitant 
with significant improvements in mass spectrometer performance and 
bioinformatics [22]. This platform has become the platform of choice 
for many unbiased biomarker discovery studies today [25,26]. 

In this study, we applied an ion intensity-based label-free protein 
quantification technology [27,28] to analyze global protein expression 
profiles of plasma cells from MM patients and healthy controls. This 
method is high-throughput and sensitive enough to detect and quantify 
thousands of proteins in complex biological samples, allowing potential 
MM protein biomarkers with high discriminate ability to be identified.

Material and Methods 
Chemicals and reagents

Urea (99.5%), dithiothreitol (DTT), iodoacetamide, acetonitrile, 
and ammonium bicarbonate were all purchased from Sigma-Aldrich 
(St. Louis, MO, USA). Modified trypsin was purchased from Promega 
(Madison, WI, USA). Heat-inactivated Fetal Bovine Serum Premium 
was purchased from Atlanta Biologicals (Lawrenceville, GA, USA).

Plasma cells

The integrity of proteomic data relies on the purity of the plasma 
cells in the input samples. In this study bone marrow mononuclear 
cells (BMNC) were isolated from the bone marrow aspirates by Ficoll 
gradient centrifugation. Plasma cells were isolated from BMNCs 
based on the cell surface antigen expression, either by flow cytometric 
analysis or Magnetic-Activated Cell Sorting (MACS) after staining 
with magnetic conjugated antibodies. However, purity of the isolated 
cells depends largely on the prevalence of population of interest in 
the sample. In addition, CD138, universal marker for plasma cells, 
was unstable and lost during sample processing. Short analysis 
time and short isolation time are required for isolating plasma cells. 
We compared three different methods for plasma cell isolation for 
processing time, purity and yield. Reported data are based on plasma 
cells isolated in the same manner. All pallets were frozen at -80°C until 
all samples were collected.

1.	 CD138+ MACS: BMNCs were incubated with a monoclonal 
mouse anti-human CD138+  antibody immunomagnetic 
microbeads (Miltenyi Biotech, Bergisch Gladbach, Germany), 
washed using PBS containing 2% bovine serum albumin and 
1 mmol/L EDTA (bead buffer) and loaded into the magnetic 
column cell separator. After three washing, cells were eluded 
from the column and checked for purity by flow cytometry 
using CD45-FITC (Becton Dickinson, Franklin Lakes, NJ, 
USA) and CD38-Cy5 (Becton Dickinson) and CD138-PE 
(Miltenyi) to identify CD45-/dim38++CD138+ of MM cells and 
CD45-/dim38-CD138+ of normal plasma cells. 

2.	 Multicolor flow cytometry sorting: Using a combination 
of antibodies against CD45, CD38, CD138, CD19, CD56, 

conjugated with FITC, PE, PerCP-Cy5.5, PE-CY7, and APC, 
BMNCs were stained with the above antibody cocktail. These 
5 colors allow exclusion of other hematopoietic cells including 
mature B cells. Normal plasma cells are CD45-, CD19+, 
CD138+, CD38-, CD56-, while MM plasma cells are CD45-, 
CD19-, D138+, CD38++, CD56+. 

3.	 Two-stage approach: Negative MAC sorting to enrich for B 
lineage cells and to eliminate other cell types, followed by flow 
cytometric sorting for plasma cells. BMNCs were incubated 
with cocktail of biotin-conjugated monoclonal antibodies 
against CD2, CD14, CD16, CD36, CD43, and CD235a 
(Glycophorin A), then passed through the magnetic column. 
Flow-through cells were enriched for B cells. They were stained 
with CD38-Cy5 (Becton Dickinson) and CD138-PE (Miltenyi), 
and sorted. 

We have consistently found that for samples with initial infiltration 
of plasma cells ≥ 10%, “CD138+ MACS” is the quickest and most 
convenient method, yielding consistently high plasma cell purity, 
but have the lowest retrieval rate as some plasma cells were present 
in the flow-through. This method is not usable for samples with low 
plasma cell abundance including all marrow aspirates from normal 
donors. “Multicolor flow cytometry sorting” gives the best purity for 
samples with less than 20% of plasma cells but take the longest time to 
sort and exclude cell populations that were not of interest. Viability of 
plasma cells in sorting experiments of more than 4-5 hours was poor. 
“Two-stage approach” was chosen for plasma cells isolation from both 
myeloma and normal bone marrows as it balances cell purity with 
processing time and therefore cell viability. All pallets were frozen at 
-80°C until all samples were collected.

Patient and healthy donor demographics

The study was conducted in compliance with the Declaration of 
Helsinki and with an approval of the Indiana University School of 
Medicine Institution Review Board. Patients with newly diagnosed 
MM who underwent bone marrow aspiration and biopsy for their 
routine care consented to donate an additional 5 ml of bone marrow 
aspirates for the study. Healthy volunteers signed up for the study 
voluntarily and donated up to 15 ml of bone marrow aspirates. Each 
patient and normal donors donate once for the study. There were no 
biological replicates. Their demographics were noted in Table 1.

Sample preparation for mass spectrometric analysis

As previously described [29], protein extraction from plasma 
cells was carried out in lysis buffer containing 8 M urea and 10 mM 
dithiothreitol (DTT). Bradford assay was performed to determine 
protein concentrations [30]. Triethylphosphine and iodoethanol were 
used to reduce and alkylate resulting protein extracts, respectively 
[31]. Protein mixtures were digested with modified trypsin and 
filtered through spin filters (0.45 µm) before being applied to the high-
performance liquid chromatography (HPLC) system. Stability of the 
HPLC system and mass spectrometry (MS) instrument was evaluated 
by spiking a constant amount of chicken lysozyme as an internal 
reference for quality assurance and quality control (QA/QC) prior to 
tryptic digestion of protein extracts. 

Liquid chromatography-tandem mass spectrometry (LC/MS/
MS)

In random order, tryptic peptides (~2 µg) were injected onto an 
Agilent 1100 nano-HPLC system (Agilent Technologies, Inc., Santa 
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Clara, CA, USA) equipped with a C18 capillary column (i.d. = 75μm 
, length = 5cm, pore size = 3μm, particle size = 100 Å). Peptides were 
eluted with a linear gradient from 5 to 45% acetonitrile developed at a 
flow rate of 500 nL/min over 120 min. Effluent was electro-sprayed into 
a LTQ mass spectrometer (Thermo-Fisher Scientific, Inc., Waltham, 
MA, USA). Data collection was performed in the “Triple-Play” mode 
(MS scan, Zoom scan, and MS/MS scan). Acquired data was filtered and 
analyzed by a previously published proprietary algorithm developed by 
Higgs et al. [27,28]. 

Protein identification, quantification, and statistical analysis

Protein database searches against the International Protein Index 
(IPI) human database (v3.60) and the NCBI Non-redundant-homo 
sapiens database (updated in January 2017) were carried out by 
both the SEQUEST (Thermo-Fisher Scientific, Waltham, MA, USA) 
and X!Tandem (an open-source software available from the Global 
Proteome Machine Organization, http://www.thegpm.org) database 
searching algorithms. Identified proteins were categorized into four 
priority groups based on the quality of the peptide identification and 
the number of unique peptides identified [32]. All the proteins were 
identified with at least one best peptide identified at a confidence 
level ≥ 90% (q-value≤ 0.1, q-value represents a false-discovery-rate or 
FDR which was described previously [33,34] or higher. Proteins were 
assigned to Priority 1 if two or more unique peptides were identified 
or Priority 2 if only a single peptide was identified. Peptides assigned 
to proteins with a confidence level of less than 90% but greater than 
75% were assigned to Priority 3 (with >2 unique peptides) and Priority 
4 (with a single peptide), respectively. Peptides with peptide ID 
confidence <75% were filtered out of this study. The estimation of the 
confidence levels, which is based on a random forest recursive partition 
supervised learning algorithm was described previously [28].

Protein quantification was carried out using a proprietary 
protein quantification algorithm licensed from Eli Lilly & Company 
(Indianapolis, IN, USA) as described previously [27,28]. Briefly, once 
the raw files were acquired from the mass spectrometer, all extracted 
ion chromatograms (XICs) were aligned by retention time. To be 

used in the protein quantification procedure, each aligned peak must 
match the parent ion, charge state, fragment ions (MS/MS data), and 
retention time (within a 1-min window). After alignment, the area-
under-the-curve (AUC) for each individually aligned peak from each 
sample was measured, quantile normalized [35], and compared for 
relative abundance. All peak intensities were transformed to a log2 scale 
before quantile normalization. Quantile normalization was employed 
to ensure that every sample has a peptide intensity histogram of the 
same scale, location, and shape. This normalization removes trends 
introduced by technical variations including sample handling, sample 
preparation, total protein differences, and changes in instrument 
sensitivity while running multiple samples [35]. If multiple peptides 
have the same protein identification, then their quantile normalized 
log2 intensities were averaged to obtain log2 protein intensities. The 
log2 protein intensity is the final quantity that is fit by a separate 
ANOVA statistical model for each protein:

Log2(Intensity) = Group + Sample(Group)

Sample(Group) is a random effect. Group effect refers to the effect 
caused by the experimental conditions or treatments being evaluated. 
Sample effect represents the random effects from individual biological 
samples. It also includes random effects from sample preparation. 
All of the injections were randomized, and the same person operated 
the instrument for all samples in this study. The inverse log2 of each 
sample’s mean was calculated to determine the fold change between 
groups.

Pathway analysis
All priority 1 proteins with significant differential expression 

(q<0.05) were considered for further characterization by pathway 
analysis. Identified proteins were classified according to biological 
function(s) by Ingenuity Pathway Analysis software (https://analysis.
ingenuity.com). Statistical analyses were performed using JMP software 
(SAS Institute, Inc., Cary, NC). A p-value <0.05 was considered 
significant.

Multiple-Reaction-Monitoring (MRM) Development for 
target validation

To validate some of these differentially expressed proteins, a mass 
spec-based MRM assay was developed. A different patient cohort was 
also used for this validation study. All MRM mass spectrometric analyses 
were performed on an AB SCIEX 4000 Qtrap hybrid triple-quadrupole 
linear ion-trap mass spectrometer (AB SCIEX, Framingham, MA, USA) 
interfaced with a Dionex UltiMate 3000 UHPLC system (Thermo-
Fisher Scientific). Liquid chromatography (LC) was performed on a 
TSK-GELTM ODS-100V C18 column (Tosoh Bioscience, Tokyo, Japan, 
1 mm i.d. × 50 mm, 3μm pore size). Peptides were eluted with a linear 
gradient from 8 to 25% acetonitrile developed over 50 min at a flow 
rate of 60 μL/min, and effluent was electro-sprayed into the 4000 Qtrap 
mass spectrometer. The source lenses were set by maximizing the ion 
current for the M+2H+ charge state of angiotensin. Chromatographic 
data acquisition was carried out using Analyst 1.5 (AB SCIEX), and 
peak integration and quantification were carried out using Skyline 1.2.1 
(created by the MacCoss Lab, University of Washington). The selected 
proteins and their corresponding MRM peptides are shown in Table 
2. Stable-isotope labeled internal standards of each selected MRM 
peptide were spiked in before digestion for quantification purpose. 
We also monitored three transitions for a spiked external standard 
(‘GYSLGNWVCAAK’ of chicken lysozyme): m/z 656.82 (M+2H+) 
→ m/z 436.22, m/z 656.82 (M+2H+) → m/z 892.43 and m/z 656.82 
(M+2H+) → m/z 1092.55 for QA/QC purpose.

Sample ID Age Gender Type Disease
NL1 25 Male Control
NL2 30 Male Control
NL3 40 Female Control
NL5 29 Male Control
NL6 35 Female Control
NL7 28 Female Control
NL8 32 Male Control

PT1002 65 Male MM Patient IgG MM at diagnosis
PT1004 68 Male MM Patient IgA MM at relapse
PT1009 56 Female MM Patient IgG MM at relapse
PT1011 72 Female MM Patient IgG MM at relapse
PT1012 49 Male MM Patient IgG MM at diagnosis
PT1014 57 Male MM Patient IgG MM at diagnosis
PT1015 66 Female MM Patient Light chain MM at diagnosis
PT1021 70 Male MM Patient IgG MM stage at diagnosis
PT1022 62 Female MM Patient IgG MM at relapse
PT1023 56 Female MM Patient Light chain MM at diagnosis
PT1025 63 Male MM Patient Light chain MM at relapse
PT1028 65 Male MM Patient IgG MM at relapse
PT1029 50 Male MM Patient IgG MM at diagnosis

Table 1: Summary of sample information.

https://analysis.ingenuity.com
https://analysis.ingenuity.com
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Results
Plasma cell isolation from MM and Normal volunteer bone 
marrows

We found that the purity of isolated plasma cells depends largely 
on the abundance of plasma cells in the samples. For samples with 
higher than 20% of plasma cells, the positive MACS yields >95% 
plasma cells consistently, while taking the least processing time. 
However, when plasma cells in the bone marrow aspirates are less 
than 20%, purity of the positive MACS decreased dramatically and 
there was a significant plasma cell loss in the flow-through. This was 
a primary problem for normal bone marrow which usually contains 
less than 1% plasma cells.

Unbiased large-scale global proteomic study

To characterize the alterations in protein expression related to 
multiple myeloma phenotypes, we performed a label-free LC/MS-
based quantitative proteomic analysis of the sorted plasma cells from 
healthy controls and MM patients. The sample information in each 
group is summarized in Table 1. Proteins identified based on priority 
groups [27] are summarized in Table 3. A total of 776 proteins were 
identified and quantified with high confidence (Priority groups 1 & 2) 
in the samples. The expression levels of 18 proteins from Priority Group 
1 and 90 proteins from Priority Group 2 were statistically significantly 
changed. Among 18 significantly changed proteins from the Priority 
Group 1, 9 were up-regulated (Table 4) and 9 were down-regulated 
(Table 5). These 18 proteins were further analyzed by pathway analysis 
for their roles in biological processes. The overall results from the study 
are illustrated in Figure 1. When all four priority groups are considered, 
there are more down-regulated proteins than up-regulated ones.

For quality assurance and quality control (QA/QC) purpose, 
chicken lysozyme was spiked into every individual sample at a constant 
amount (5 ng chicken lysozyme per 2 μg of testing sample) before tryptic 
digestion. There were nine unique chicken lysozyme peptides being 
detected and quantified. After averaging these peptide concentration 
values, a 1.082 fold-change was observed with a q-value (FDR) of 0.77, 
suggesting this observed small change (8.2% overexpression) is not 
statistically significant and thus the data obtained from this study was 
reliable.

MRM assays

To confirm some of the observed protein expression changes 
from the global biomarker discovery experiment, a multiple-reaction-
monitoring (MRM)-based targeted proteomic assay was developed and 
a selected panel of targets were quantitatively validated by MRM. Table 
6 shows the results from the targeted MRM assays.

Discussion

Statistical motivation

The size of the treatment or disease effect (signal) needs to be 
evaluated relative to the sample and replicate variation (noise). The 
signal to noise ratio is estimated based on a statistical model. If the data 
have multiple sources of random variation such as biological samples 
and replicates then the data are modeled as a Linear Mixed Model (A 
generalization of an ANOVA, Analysis of Variance) [36]. This kind 
of model, especially when applied to complex experimental designs, 
cannot be handled by introductory methods such as t-tests. The exact 
scale of the protein expression used in the model can make a difference 
in the sensitivity. There is usually a large technical variation introduced 
by the act of ‘measurement’ in any ‘omics’ study. Randomization of 
measurement order will eliminate the bias but it is still extremely 
important to ‘normalize’ or mathematically calibrate the measurement. 
This is a highly technical matter but can be viewed as similar to 
mathematically resetting a scale to zero before each measurement. 
We use a statistically based method called ‘quantile normalization’ 
[35] which was the result of considerable research on genomic data. 
Because ‘omics’ measures of expression are usually on an arbitrary 
scale, it is best to evaluate ratios or their equivalent differences on the 
log scale. Log base 2 is chosen because a unit difference on the log scale 
is equivalent to a two-fold change.

Up-regulated biomarker candidate proteins

The nine MM biomarker candidate proteins were identified with 
high confidence. All of these proteins were found to play some roles in 
cancer, which lends support to these proteins potentially being viable 
biomarkers of MM, especially as prognostic biomarkers, i.e., treatment 
responses. 

Protein Annotation MRM Peptide z Avg. 
Mass

MRM 
Transition 1

MRM
Transition 2

MRM
Transition 3

MRM 
Transition 4

Experimentally observed

IPI00012048.1 Isoform 1 of nucleoside 
diphosphate kinase A NIIHGSDSVESAEK 2 743.79 y11++ 573.26 y10+ 1008.45        

IPI00216691.5 Profilin-1 CYEMASHLR 2 577.66 y7+ 843.41 y6+ 714.37        

IPI00017855.1 Aconitate hydratase, 
mitochondrial LNRPLTLSEK 2 586.20 b9+ 1024.58 b7+ 808.50        

IPI00021266.1 60S ribosomal protein L23a LAPDYDALDVANK 2 703.28 y11++ 610.79            

IPI00006935.3 Eukaryotic translation initiation 
factor 5A-2 KYEDICPSTHNMDVPNIK 3 717.14 y17++ 1010.46 y5+ 570.36        

IPI00298308.7
Isoform 1 of probable 

10-formyltetrahydrofolate 
dehydrogenase ALDH1L2

ANSTEYGLASGVFTR 2 787.36 y9+, 
b9+

 907.50, 
907.42

b6+, 
y6+

 666.27, 
666.36 y7+ 737.39 y5+ 579.33

IPI00297084.7

Dolichyl 
diphosphooligosaccharide 
protein glycosyltransferase 

48kDa subunit

TLVLLDNLNVR 2 635.76 y6+ 730.38 y8+ 956.55 y3+ 388.23    

IPI00220301.5 Peroxiredoxin-6 LPFPIIDDR 2 543.64 y6+ 728.39 y2+ 290.15        
IPI00019502.3 Isoform 1 of Myosin-9 DFSALESQLQDTQELLQEENR 2 1247.82 y5+ 675.31 y6+ 788.39 b16+ 1818.88    

Table 2: Selected target proteins, MRM peptides and transitions used for the MRM assay development.
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The first of these nine proteins is mitochondrial aconitate 
hydratase, which is a mitochondrial TCA-cycle enzyme catalyzing the 
reaction of reversible isomerization of citrate to isocitrate [37]. It is 
very sensitive to reactive oxygen species (ROS) [38] and plays a key role 
in the malignant transformation of the prostate [39]. The blocking of 
its mRNA expression causes a decrease in ATP biosynthesis, increase 
in citrate secretion, and reduction of the rate of proliferation of human 
prostate carcinoma cells [40]. Thus it is reasonable to assume that 
overexpression of mitochondrial aconitate hydratase increases cell 
proliferation. Evidence also supports a broad role for the p53 gene in 
regulating its expression and prostatic tumorigenesis [41].

The second protein is an uncharacterized protein cDNA FLJ50886, 
which is highly similar to mitochondrial aconitate hydratase. However, 
its function remains to be discovered.

The third and fourth proteins are isoform 1 of nucleoside 
diphosphate kinase (NDK) A and B. NDK exists as a hexamer 
composed of 'A' (encoded by NME1) and 'B' (encoded by NME2) 
isoforms. Multiple alternatively spliced transcript variants encoding 
the same isoform have been found for this gene. The NME family 
of genes encodes highly conserved (~78% amino acid identity) 
multifunctional proteins that have been shown to participate in nucleic 
acid metabolism, energy homeostasis, cell signaling, and cancer 
progression [42,43]. Some family members, particularly isoforms 1 
and 2, are the most closely related and are the ones most implicated in 
tumor progression [42]. They are also evolutionarily highly conserved. 

Indeed, the Drosophila AWD lethal phenotype can be rescued by 
exogenously expressed human NME2 [44]. Unfortunately, there have 
been few consensus mechanistic explanations for this critical function 
because of the numerous molecular functions ascribed to these 
proteins, including nucleoside diphosphate kinase, protein kinase, 
nuclease, transcription factor, growth factor, among others [45]. At 
present, it is not yet clear what molecular activity of NME is involved in 
multiple myeloma and such information will be of ultimate importance 
for the NME studies in general. 

Protein 
Priority

Peptide ID 
Confidence

Multiple 
Sequences

Number 
of Proteins 
Identified

Number 
of Significant 

Changes

Maximum 
Absolute 

Fold-change

Median 
%CV

1 High (>90%) Yes 372 18 2.43 20.35
2 High (>90%) No 404 90 16.54 38.39
3 Moderate (75~90%) Yes 20 3 5.23 33.26
4 Moderate (75~90%) No 520 58 10.67 47.03

Overall 1316 169 16.54 34.35

Table 3: Overall summary of the study.

Protein ID (IPI) Annotation Fold-change
IPI00017855.1 Aconitate hydratase, mitochondrial 1.49
IPI00909879.1 cDNA FLJ50886, highly similar to aconitate hydratase, mitochondrial 1.58
IPI00012048.1 Isoform 1 of nucleoside diphosphate kinase A 1.78
IPI00026260.1 Isoform 1 of nucleoside diphosphate kinase B 1.61
IPI00419373.1 Isoform 1 of heterogeneous nuclear ribonucleoprotein A3 1.64
IPI00216691.5 Profilin-1 1.65
IPI00452747.6 Similar to Signal peptidase complex subunit 2 1.69
IPI00021266.1 60S ribosomal protein L23a 2.02
IPI00006935.3 Eukaryotic translation initiation factor 5A-2 2.11

Table 4: Up-regulated proteins in priority 1 group with FDR<5%.

Protein ID (IPI) Annotation Fold-change
IPI00298308.7 Aldehyde dehydrogenase 1 family member L2 (ALDH1L2) -2.01
IPI00219291.5 Isoform 2 of ATP synthase subunit F, mitochondrial -1.99
IPI00013895.1 Protein S100-A11 -1.79
IPI00171903.2 Isoform 1 of Heterogeneous nuclear ribonucleoprotein M -1.74
IPI00010471.5 Plastin-2 -1.74
IPI00007188.5 ADP/ATP translocase 2 -1.70
IPI00297084.7 Dolichyl-diphosphooligosaccharide - protein glycosyltransferase 48 kDa subunit -1.62
IPI00220301.5 Peroxiredoxin-6 -1.46
IPI00019502.3 Isoform 1 of myosin-9 -1.44

Table 5: Down-regulated proteins in priority 1 Group with FDR<5%.

Figure 1: Overall up- and down-regulated proteins.
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The fifth protein, isoform 1 of heterogeneous nuclear 
ribonucleoprotein A3 (hnRNP A3), is a relatively less known protein 
compared to the best known members of the hnRNP family (i.e., A1, 
A2/B1). The hnRNP proteins have a major nucleoplasmic localization 
with several of them (A, D, E, I, K, L) capable of nucleo-cytoplasmic 
shuttling, while others (C and U) do not exit the nucleus except under 
certain cellular conditions [46,47]. In addition to the major nuclear 
role of hnRNPs in mRNA processing (splicing, polyadenylation) 
and transport, they are known to participate in several other events, 
including transcription, DNA repair and telomere DNA formation 
[48,49]. The function of hnRNP A3 was also suggested by Ma et al. [50] 
and Papadopoulou et al. [51] to be involved in many aspects of mRNA 
maturation processes including the hnRNPs/mRNA interactions. 
However, the role of the overexpression of hnRNP A3 in MM plasma 
cells is still unclear.

The sixth protein, profilin-1, coded by the PFN1 gene, is a 
ubiquitous actin-binding protein regulating actin polymerization in 
response to extracellular signals. Deletion of the PFN1 gene is associated 
with Miller-Dieker syndrome [52]. It also plays a role in Huntington 
disease [53]. Recently published proteomics data have demonstrated 
that profilin-1 could be used as a biomarker for breast cancer prognosis 
[54,55], although further validation is required before it can be used 
to predict treatment response to tamoxifen in breast cancer patients. 
It was described three decades ago that profilin-1 is involved in the 
negative regulation of carcinoma cell motility [56]. It is also associated 
with other cancers [57]. 

The seventh protein, similar to signal peptidase complex subunit 
2 (SPCS2), is a serine protease that cleaves signal peptides from 
translocated precursor proteins [58]. However, its role in cancer or 
other diseases remains to be uncovered.

The eighth protein, 60S ribosomal protein L23a (RPL23A), 
together with a small 40S ribosomal protein, forms the ribosome 
complexes that catalyze protein synthesis [59]. In human, this protein 
belongs to the L23P family of ribosomal proteins and may be one of 
the targets involved in mediating growth inhibition by interferon 
[60]. It was recently shown by Sun et al. that RPL23A exhibited anti-
cancer function on the Hep-2 cells [61]. More research is required to 
determine the anticancer activities of this protein.

The final protein in this group, eukaryotic translation initiation 
factor 5A-2 (eIF5A-2), is a well characterized protein involved in the 
regulation of cell proliferation and apoptosis [62]. Overexpression 
of eIF5A-2 promotes colorectal carcinoma cell aggressiveness by up-
regulating MTA1 through c-Myc to induce epithelial mesenchymal 
transition [63] and enhances cell motility and metastasis [64]. eIF5A-2 
is an adverse prognostic marker of survival in stage I non-small cell 

lung cancer patients [65]. It was also recently suggested that eIF5A-2 
may serve as a new molecular diagnostic or prognostic marker or as a 
molecular target for anti-cancer therapy [66,67].

Down-regulated priority 1 proteins

The nine significantly down-regulated proteins in the Priority 
Group 1 are aldehyde dehydrogenase 1 family member L2 (ALDH1L2), 
isoform 2 of mitochondrial ATP synthase subunit F, protein S100-A11, 
isoform 1 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), 
plastin-2, ADP/ATP translocase 2, dolichyl-diphosphooligosaccharide-
protein glycosyltransferase 48 kDa subunit, peroxiredoxin-6, and 
isoform 1 of myosin-9 (Table 4). Among these proteins, protein 
S100-A11, hnRNP M, peroxiredoxin-6, and isoform 1 of myosin-9 
are of particular interest because they have been implicated in cancer 
progression.

Protein S100-A11, also called calgizarrin, was found to be 
differentially expressed in UV-treated HeLa cells [68], in human head-
and-neck squamous cell carcinomas (HNSCCs) [69], and in colorectal 
carcinoma [70]. Although the precise role of S100-A11 protein in 
carcinogenesis is poorly understood, it seems that formation of homo- 
and hetero-dimers, binding of Ca2+, and interaction with effector 
molecules are essential for the development and progression of many 
cancers [71,72]. Several studies have suggested that S100 proteins 
promote cancer progression and metastasis through cell survival and 
apoptosis pathways [73-75]. 

hnRNP M plays role in mediating metastasis and the inflammatory 
response [76,77], while under-expression of peroxidoxin-6 enhances 
the susceptibility of cells to tumorigenesis [78]. Isoform 1 of myosin-9 
is a known binding protein that binds to a number of proteins related 
to cancer progression and the unconventional secretory pathway [79].

Study limitations

This work demonstrates the use of large-scale quantitative mass 
spectrometry for rapid identification of biomarker candidates which 
could have important clinical value once further validated. More 
detailed studies, especially on larger sample size, will allow sufficient 
power to discern the importance of these biomarkers. We also 
highlight the technical difficulties of cellular biomarkers, particularly 
for studies of low-abundance plasma cells. We demonstrate dire need 
for method standardization. Our methodology could benefit analysis of 
bone marrow samples with low plasma cell abundance such as samples 
after therapy to determine important markers for disease response or 
relapse. 

Our study has technical limitation in the age difference between 
the healthy control and patients. Age-matched healthy controls are 
difficult to find as myeloma is a disease of the elderly.  Ways to obtain 

Protein Annotation Observed 
Fold-Change (FC)

IPI00012048.1 Isoform 1 of nucleoside diphosphate kinase A 1.91
IPI00216691.5 Profilin-1 1.75
IPI00017855.1 Aconitate hydratase, mitochondrial 1.61
IPI00021266.1 60S Ribosomal protein L23a 2.32
IPI00006935.3 Eukaryotic translation initiation factor 5A-2 2.12
IPI00298308.7 Isoform 1 of probable 10-formyltetrahydrofolate dehydrogenase (ALDH1L2) -2.17
IPI00297084.7 Dolichyl-diphosphooligosaccharide – protein glycosyltransferase 48 kDa subunit -1.62
IPI00220301.5 Peroxiredoxin-6 -1.81
IPI00019502.3 Isoform 1 of myosin-9 -1.57

Table 6: Target proteins detected by MRM from the clinical samples (“-“ indicates down-regulation).
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normal age-matched population may be to isolate normal plasma cells 
from our patients who are in remission after stem cell transplantation 
but exposure to treatment and possible contamination of remaining 
small number of myeloma cells are confounding factors. Alternatively, 
normal plasma cells can be isolated from bone marrows of patients 
undergoing bone marrow aspirates for other reasons unrelated to 
myeloma, such as anemia. However, the underlying health reasons 
that mandate the procedure are also confounding factors. In addition, 
additional bone marrow aspirates required for research may not be safe 
to obtain from patients with significant anemia. Ultimately, the best 
validation strategy may be to directly evaluate these proteins in a larger 
and independent patient cohort. 

We cannot exclude the impact of aging on expression of these 
proteins. Literature search did not identify an alteration of these 
proteins with aging in general and within the lymphocyte system. Again, 
a validation in a larger patient cohort may allow stratifying patients 
into different age groups. A different expression in younger patients 
compared to older patients i.e. less than 65 years of age and older may 
give a clue to the age effect on protein expression. Mechanistic studies 
of these proteins in myeloma biology require genetic knockdown 
models or specific inhibitors where applicable.

Conclusion
With increased interest in biomarker research, the data and method 

reported in this unbiased global proteomic study may serve as a good 
example for clinical biomarker discovery. Using a panel of candidate 
biomarkers will most likely enhance the selectivity and specificity of 
a diagnostic and/or prognostic assay. The time has come to explore 
protein biomarkers as tools to further enhance our understanding of 
multiple myeloma and potentially improved patient care. 
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