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Abstract

All-trans-retinoic (atRA) acid is a biologically active derivative of vitamin A that regulates numerous physiological
processes through its interaction with nuclear retinoid receptor proteins, termed as retinoid acid receptors (RARs)
and retinoid X receptors (RXR). Retinoid signaling is diverse and its role in embryonic development, adult growth
and development, maintenance of immunity and epithelial barriers, and vision has been elucidated. An increased
body of evidence suggests that altered metabolism of retinoic acid under experimental type-1 diabetes conditions
induced with streptozotocin (STZ) is related to insulin deficiency. In several experimental approaches the role of
atRA treatment in STZ-induced diabetes has been tested. This review summarizes current knowledge on the role of
retinoids and atRA in the improvement of pathological alterations in STZ-induced experimental type-1 diabetes in
kidney, retina, skin and nervous system.
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Introduction
Vitamin A or retinol is a fat-soluble compound derived from [beta]-

carotene found in plants and retinyl esters from animal sources. The
human body obtains vitamin A from two sources: preformed vitamin
A (retinol and retinyl esters) and provitamin A carotenoids (β-
carotene, α-carotene and β-cryptoxanthin) [1,2].

All-trans-retinoic acid (atRA) is a derivative of vitamin A and it is
required for almost all essential physiological processes and functions
because of its involvement in transcriptional regulation of over 530
different genes [3,4]. atRA exerts its actions by serving as an activating
ligand of nuclear atRA receptors [retinoid acid receptor (RAR) α,
RARβ, and RARγ] and peroxisome proliferator-activated receptor
(PPAR) β/δ which form heterodimers with retinoid X receptors (RXR)
[5,6]. atRA plays a relevant role in tissue development and
differentiation [7]. This review focuses on the role of atRA in the
alterations secondary to β cell damage induced by streptozotocin.

Retinoids
Vitamin A and its metabolites (retinoids) are a group of potent

natural or synthetic molecules which exert a number of biological
activities, including embryonic development, adult growth and
development, maintenance of immunity, maintenance of epithelial
barries, and vision [8]. Dietary retinyl esters are hydrolyzed in the
intestine, and retinol taken into the enterocyte is reesterified. Retinyl
ester is further secreted into the circulation and transported as retinol
bound to retinol-binding protein (RBP4) to its target cells [9]. Studies
have shown that retinol enters by diffusion [10]. However, in 2007, a
cell surface receptor for RBP4 termed STRA6 (stimulated by retinoic
acid 6) was identified, STRA6 is a widely expressed multi-
transmembrane domain protein, it binds to RBP with high affinity and

has robust vitamin A uptake activity from the vitamin A–RBP
complex. It is widely expressed in embryonic development and in
adult organ systems [11]. A human genetic study found that mutations
in the human STRA6 gene are associated with widespread birth defects
in multiple organ systems [12]. This is consistent with the expression
of STRA6 and the diverse functions of vitamin A in embryonic
development.

Most of Vitamin A actions depend on its active metabolites, mainly
atRA and 9-cis-RA [13,14], formed in the target tissues mostly through
the intracellular oxidative metabolism [15]. Intracellularly, retinoic
acid (RA) is subsequently converted to atRA, which can be isomerized
through non-enzymatic process to form 9-cis-RA isomer. atRA is
produced from retinol in two oxidative steps: first, retinol is oxidized
to retinaldehyde, and then retinaldehyde is oxidized to atRA. The first
step, the oxidation of retinol to retinaldehyde is catalyzed by two
enzyme families, the cytosolic alcohol dehydrogenases (ADHs) and
microsomal retinol dehydrogenases (RDHs) and is generally
considered rate-limiting [16]. Retinaldehyde can be converted back to
retinol, but the oxidation of retinaldehyde to atRA is irreversible, this
latter reaction is catalyzed by three retinaldehyde dehydrogenases
(RALDH1, RALDH2 and RALDH3).

Two forms of retinoic acid, atRA and 9-cis retinoic acid (9-RA),
serve as ligands for two families of nuclear receptors: RAR (RARα, β,
and γ) and RXR (RXRα, β, and γ). In vitro binding studies have
demonstrated that RARs bind to atRA with high affinity, whereas 9-
RA is a bifunctional ligand, which can bind to and activate both RARs
and RXRs. However, it has not been demonstrated a relationship
between the structure of atRA and 9-cis-RA with the affinity for RARs
and RXRs. Following ligand binding, these compounds interact with
cis acting DNA sequences called retinoic acid responsive elements in
the promoter regions of target genes, thereby regulating gene
expression (Figure 1) [17].
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Figure 1: Action mode of retinoic acid in the cell. Reinol enters the
cell, then it is oxidized to retinal and retinoic acid. Retinoid acid
coupled with the heterodimer of RAR-RXR, binds to the retinoic
acid-responsive element of target genes. RE, retinyl ester; Chy,
chylomicrons; ROH, retinol; RBP, retinol binding protein; RCHO,
retinal; atRA, all-trans-retinoic acid; 9-RA, 9-cis-retinoic acid; RAR,
retinoic acid receptor; RXR, retinoid X receptor.

Experimental diabetes induced by streptozotocin
Streptozotocin (STZ) (2-deoxy-2-(3-methyl-3-nitrosourea)-1-D-

glucopyranose) is a naturally occurring compound, produced by the
soil bacterium streptomyces achromogenes, that exhibits broad
spectrum of antibacterial properties [18]. STZ is a cytotoxic glucose
analogue. After its discovery, it was used as a chemotherapeutic
alkylating agent in the treatment of metastasizing pancreatic islet cell
tumors and other malignancies such as: small cell lung cancer,
lymphomas, mycosis fungoides, multiple myeloma, glioma and
malignant melanoma [19]. Rakieten and colleagues reported the
diabetogenic properties of STZ in 1963 [20]. From that time of
discovery till date, STZ has been one of the chemical agents for the
induction of diabetes in experimental animals. STZ induces diabetes in
rats, mice, monkeys, hamsters, rabbits and guinea pigs [18]. STZ is
cytotoxic to pancreatic β-cells and its effects are present within seventy
two hours after administration depending on the dose used [21]. STZ
toxic action involves its uptake into cells.

The selective pancreatic beta cell toxicity and the diabetic condition,
resulting from STZ induction, are related to the glucose moiety in its
chemical structure, which enables STZ to enter the beta cell via the low
affinity glucose 2 transporter (GLUT2) in the plasma membrane. In
contrast, in insulin-producing cells not expressing the GLUT2, the
cellular uptake of STZ is very slow. Correspondingly low is the toxicity
[22] because the β-cells of the pancreas are more active than other cells
in taking up glucose and so are more sensitive than other cells to STZ
challenge.

STZ is a structural analogue of glucose (Glu) and N-acetyl
Glucosamine (GlcNAc). STZ causes β-cell death by DNA
fragmentation due to the nitrosourea moiety. Three major pathways
associated with cell death are: (i) DNA methylation resulting in the
activation of the nuclear enzyme poly ADP-ribose synthetase as part of
the cell repair mechanism and consequently, NAD+ depletion; (ii)
Nitric oxide production, and (iii) Free radical generation such as
hydrogen peroxide [23,24]. The American Diabetes Association

established an etiologic classification of Diabetes mellitus and based on
their classification, four groups were proposed: 1) Type 1 (5–10%); 2)
Type 2 (90–95%); 3) Other specific types and 4) Gestational. Thus,
STZ-induced diabetes belongs to the category of other specific types or
drug (chemical) induced diabetes.

The type of diabetes induced by STZ is controversial since STZ-
hyperglycemia can be similar to either type I or type II diabetes
mellitus [25]. Type I diabetes is an autoimmune disease leading to the
destruction of the insulin producing pancreatic beta cells in the islets
of Langerhans. Type I diabetes is most commonly diagnosed in
children and young adults, and by the time of diagnosis, patients have
very little endogenous insulin production, many researchers conclude
that STZ produces type I diabetes mellitus [26,27].

On the other hand, the dose of STZ required for inducing diabetes
depends on the animal species, age of animal, route of administration,
weight of animal, nutritional status and different responses to
xenobiotics.

Protective effects of all-trans-retinoic acid (atRA) in
STZ-induced type-1 diabetes

Several studies have pointed out that atRA acts as an important
signaling molecule for mesenchymal/epithelial interactions in the
development of kidney, lung, central nervous system and gut [28-31].
Also, retinoids have been considered as insulinotropic factors [32,33]
or its deficiency is related to the cause of type-1 diabetes [34,35]. It has
been shown that at embryonic day (e) 11.5 of mice, atRA is
endogenously and exclusively present in pancreatic mesenchyme,
made evident by mRNA and protein expression of retinaldehyde
dehydrogenase 2 (RALDH2) enzyme. In the presence of exogenous
atRA, pancreatic rudiments differentiate into ducts and endocrine cells
and inhibit acini. Furthermore, atRA upregulates pancreatic
duodenum homeobox (PDX)-1, an important transcription factor in
pancreatic development. These data suggest the important roles of
atRA in determining the cell fate of pancreatic progenitor cells, leading
to the proper formation of endocrine versus exocrine pancreas during
organogenesis [36].

Also, it is possible to induce pancreatic differentiation of mouse
Embryoid Body-Like Sphere (EBS) by simultaneous stimulation with
activin and retinoic acid [37]. In fact, using activin to induce the
differentiation of undifferentiated Embryonic Stem (ES) cells into
endoderm and induction of pancreatic differentiation with retinoic
acid are important elements that are common to almost all of the
methods for obtain pancretic β cells from human ES cells and induced
Pluripotent Stem Cells (iPS) [38].

There is scant information about the metabolism of atRA in
diabetes, including diabetic nephropathy. Starkey and colleagues [39]
recently described altered retinoic acid metabolism under diabetic
conditions and suggested that a shift in atRA metabolism is a novel
feature in type-2 diabetic renal disease. Ingenuity Pathway Analysis
identified altered retinoic acid as a key-signaling axis that was altered
in the diabetic renal cortical proteome. Western blotting and real-time
PCR confirmed diabetes-induced upregulation of RALDH1, which
was localized by immunofluorescence predominantly to the proximal
tubule in the diabetic renal cortex, while PCR confirmed the down
regulation of Alcohol Dehydrogenase (ADH) identified by mass
spectrometry. Despite increased renal cortical tissue levels of retinol
and RALDH1 in db/db versus control mice, atRA was significantly
decreased in association with a significant decrease in PPARβ/δ
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mRNA [39]. Also, plasma, and kidney concentrations of Retinol
Binding Protein (RBP) are significantly lower in STZ-treated rats
compared to controls, suggesting that STZ-induced diabetes is
associated with a depressed plasma concentration of retinol which may
be due, at least in part, to its impaired metabolic transport from the
liver [40]. It has long been established that 66–75% of dietary retinoid
(chylomicron and chylomicron remnant retinoid) is taken up by the
liver where it is stored in Hepatic Stellate Cells (HSCs) [41]. Evidence
to date suggests that reduced metabolic availability of vitamin A
occurs predominantly as a result of insulin deficiency.

The role of atRA treatment on STZ-induced experimental diabetic
nephropathy has been tested by Han et al., who described that atRA
treatment decreased diabetes-induced renal expression and urinary
excretion of monocyte chemoattractant peptide (MCP)-1 and
Albumin: Creatinine Ratio (ACR). Also, in cultured podocytes, high
glucose stimuli rapidly increased MCP-1 mRNA and protein
expression, which was attenuated by atRA, suggesting an anti-
inflammatory and renoprotective role of atRA in the early stages of
diabetic nephropathy [42].

A protective role of atRA has been shown in diabetic and
nondiabetic proteinuric diseases [42] and a link between a cytochrome
P450 enzyme known to metabolize atRA and increased mitochondrial
oxidative stress in type 1 diabetic rat kidneys has been established,
since P450 enzyme increases the elimination of atRA from the body
[43]. Recently, atRA has been shown to bind PPARβ/δ and act as a
ligand to activate transcription, suggesting that altered retinoic
metabolism could provide a potential link to insulin resistance and
fatty acid [43].

Glucose-induced Endothelial Nitric Oxide Synthase (eNOS)
expression and NO production in mesangial cells may contribute to
hyperfiltration in diabetes and RA may exert beneficial effects by
downregulation of Stromal Interaction Molecule 1 (STIM1) and store-
operated Ca2+ influx (SOC) [44].

On the other hand, it has been reported that skin disorders in STZ-
induced type 1 diabetes might be partially due to the reduced levels of
vitamin A, which might exert protective effects against skin changes
induced by diabetes. Treatment with vitamin A or RA influences
various physiological processes in skin tissues, including enhancement
of cell communication, and inhibition of metabolic activation. RA
treatment reduced the activity of metalloproteinase and hyaluronidase
in the skin tissues of diabetic rats. Also, blood retinol levels in STZ-
treated rats were lower than controls, suggesting that type-1 diabetic
rats could be vitamin A-deficient [45]. Also, superficial skin wounds in
diabetic rats heal more rapidly in animals that have been pretreated
with a regimen of topical atRA. At the histological level, recently
healed skin from vehicle-treated diabetic rats contains a thin, wispy
provisional matrix in which many of the embedded cells were round
and some of them were pycnotic. In contrast, a much denser
provisional matrix with large numbers of embedded spindle-shaped
cells was observed in healed wounds from diabetic skin that had been
pretreated with atRA. The atRA-treated diabetic skin was
histologically similar to vehicle-treated skin from nondiabetic animals.
In light of these findings, prophylactic use of retinoid-containing
preparations might be useful in preventing the development of non-
healing skin ulcers resultant from minor traumas in at-risk skin [46].

In a model of diabetic mice neuropathy induced by STZ
administration, atRA treatment reverted the ultrastructural
morphologic changes, as observed by the improvement in sensibility

and the reduction in neuropathy by increasing the Neural Growth
Factor (NGF) concentrations in nerve terminals [47,48]. Also, in a
mouse model of STZ-induced dementia of Alzheimer´s type, atRA
attenuated memory deficits by virtue of its neuroprotective, anti-
cholinesterase, anti-oxidative, anti-inflammatory and probably
amyloid lowering potential [49]. Retinol treatment decreased lipid
peroxidation in the retina of STZ-treated animals, and improved the
loss of fat-soluble antioxidants determined by the ferric chloride-
bipyridyl reaction. It seems permissible to assume that retinoids may
be involved in physiological protective mechanisms against lipid
peroxidation in the retina in addition to their photo-receptive
functions as visual pigment [50]. Also, atRA treatment decreased the
number of apoptotic cells in the retina of STZ-treated mice evaluated
by TdT-dUTP terminal nick-end labeling assay [51]. It was found that
atRA exerts immunomodulatory actions in a number of inflammatory
and autoimmune conditions, atRA reduced emergence of primed
(autoreactive) CD4+ CD25+ T cells and reduced Th1/Th17 response
and nitric oxide production in peripheral lymphoid tissues thus
shifting the balance towards the anti-inflammatory cytokines [52].

Several doses have been used to test the protective effect of atRA on
STZ-induced alterations, which are in the range of 1-20 mg/kg/day at
times between 1-8 weeks [42,46-52] in animal models. However, the
results of several classical clinical studies showed that chronic
administration of vitamin A in slight excess of 5,000 IU/d is associated
with a reduction in bone density and increased risk for osteoporotic
fractures in the older individuals [53]. Also, castrated mice injected
intraperitoneally with 10 mg/kg daily during 3 weeks with atRA
showed significant bone loss, this effect was more pronounced in
testosterone-deficient animals. Testosterone deficiency as occurs
following castration may sensitize the bone to resorption mediated by
atRA. Therefore, chronic vitamin A administration may be a risk
factor for osteoporosis in rodents [54].

Conclusion
Retinoids have many important and diverse functions throughout

the body, including roles in vision, regulation of cell proliferation and
differentiation. The experiments described above provide evidence
that atRA supplementation under diabetic conditions exerts protective
effects and ameliorates pathological alterations in diabetes by
modulating several signaling pathways including anti-inflammatory,
antioxidant, immunomodulatory and antiapoptotic properties, thus
suggesting a promising role of atRA as a potential chemo-therapeutic
or chemo-preventive agent against diverse complications in diabetes.
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