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Abstract

A hallmark of SLE is the presence of elevated levels of circulating anti-nuclear autoantibodies specific towards
chromatin, histones or dsDNA. Understanding the regulation of antibody production is therefore of utmost
importance in understanding lupus pathogenesis. Spearheaded by the identification of accumulating
immunosuppressive neutrophils in cancer patients, the nature and function of neutrophils have expanded from a
uniform pro-inflammatory cell population to a heterogeneous population of cells with pro-inflammatory or
immunosuppressive capacities. While much is known about pro-inflammatory neutrophils and the likely pathogenic
function of such cells in lupus, a potential role for immunosuppressive neutrophils in protecting genetically
predisposed individuals has only recently emerged. For example, SLE-derived neutrophils spontaneously produce
type I interferons (IFNα), strongly associated with disease development, release chromatin-containing neutrophil
extracellular traps (NETs), potentially functioning as a source of nuclear auto-antigen, and may activate B cells in a
T cell independent fashion. In contrast, levels and functions of regulatory neutrophils (Nregs) involved in T cell-
dependent B cell differentiation and germinal center reactions, are dysregulated in female lupus-prone mice during
disease development. Here we review data supporting a role for both pro- and anti-inflammatory neutrophils in
lupus.
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Introduction
Systemic Lupus Erythematosus (SLE) is characterized by elevated

levels of antinuclear antibodies (ANA) and circulating immune
complexes (IC) known to deposit in organs such as the skin, kidney,
heart, and lung, promoting mononuclear cell infiltration and tissue
damage. The development of SLE is attributed both environmental
triggers and genetic predisposition, and presents with an
overwhelming female bias [1]. Since pathogenic autoantibodies
characterize the disorder, decades of research have focused on the
function and dysregulation of autoreactive B cells. However, since the
discovery of elevated levels of neutrophil-associated gene transcripts in
peripheral blood mononuclear cell samples from SLE patients as
compared with healthy controls [2], an increasing number of studies
have investigated the role of neutrophils in the pathogenesis of SLE.

Neutrophils are the most abundant circulating leukocyte. The cells
are short-lived, granule-rich and constitute the primary defense
against microbial and fungal infections [3]. During infections,
circulating neutrophils are recruited to the site of infection by

chemotactic cytokines. The classic effector functions of neutrophils
include phagocytosis and the release of antimicrobial proteins, reactive
oxygen species (ROS), metalloproteinases (MMPs) and other
endopeptidases such as trypsin and neutrophil elastase [4]. While the
functions of these effector mechanisms are detrimental to pathogens,
these enzymes may also harm the host resulting in tissue damage and
necrosis. More recent evidence suggests that neutrophils can also
function as antigen presenting cells [5,6], as a source of autoantigen
and type I interferon (IFNα) in autoimmunity [7-10], or even as
negative regulators of T and B cell responses during systemic
inflammation [11-14]. In this review we discuss evidence from human
and mouse studies supporting a key role for pro- and anti-
inflammatory neutrophils in lupus pathogenesis.

Pro-inflammatory Neutrophils in Accumulate in SLE
Patients and Mice with Lupus-like Disease

Despite chronic neutropenia and hyper-susceptibility to bacterial
infections [15-17], a significant proportion of SLE patients display
elevated levels of immature neutrophils and a pronounced
granulopoiesis gene expression signature in cells from both peripheral
blood and bone marrow exudates [2,18,19]. In addition, neutrophils
are known to infiltrate target organs such as the skin, kidney or
vasculature in SLE patients [20-22], although the pathogenic nature of
such infiltration remains unknown. The population of neutrophil-like
cells accumulating in SLE patients can be divided into at least two
subpopulations based on their granularity: high density (mature
granulocytic) neutrophils and low density (immature monocytic)
granulocytes (LDGs) [2,22]. The functional capacities of both cell
subsets are dysregulated in SLE patients however it is not yet clear
whether such defects are in themselves causative in disease
development [7,8].
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Likewise, in virtually all murine models of SLE, myeloid lineage
cells accumulate in the circulation, spleen and/or target organs (CNS,
kidneys, lungs and vasculature) as disease progresses [23-26]. The
appearance of elevated numbers of CD11b+ cells most often correlates
with the development of other disease markers such as ANA
production and/or kidney infiltration, and thus, these cells are
generally believed to exert pro-inflammatory functions. CD11b
expression is shared among many cell subsets and additional surface
markers along with nuclear morphology analyses are commonly used
to define neutrophil populations. Thus, accumulating neutrophil-like
cells co-express the surface marker Ly6C and show a monocytic
nuclear morphology in female autoimmune (NZB x NZW)F1 mice
[27,28], while the dominant population of neutrophil-like cells in
protected male (NZB x NZW)F1 mice express Ly6G and a multilobe
nuclear morphology [28] (please see below for more details). In
MRL/lpr lupus-prone mice and pristane-induced lupus models both
Ly6C+ and Ly6G+ cell populations accumulate [23,29,30], while
neither of these two markers are present on accumulating myeloid
cells in BXSB mice [31-33].

Neutrophil-associated Effector Functions are
Abnormal in SLE Patients and Mouse Models of Lupus

Phagocytosis
Both adult and juvenile-onset SLE patients and patients with

chronic granulomatous disease are known to have an increased risk of
developing lupus, present with elevated levels of apoptotic neutrophils
[34-38]. Under non-inflammatory conditions, neutrophils have a short
life span ending with spontaneous apoptosis and subsequent removal
by phagocytes [39]. During inflammation, however, neutrophils are
kept alive to help fight off the infection. It is therefore conceivable that
apoptotic neutrophils accumulate in SLE patients, not as a result of
increased apoptosis, but rather, due to impaired clearance of apoptotic
bodies by professional phagocytes including macrophages and
neutrophils themselves. Defective phagocytosis may stem from SLE-
associated gene polymorphisms affecting the expression and/or
function of Fc-receptors (FcgRIIa, FcgRIIb and FcgRIII) or
complement receptor 3 (CR3; CD11b/CD18) [40-42], all of which are
involved in macrophage and neutrophil-dependent phagocytosis.

Production of reactive oxygen and nitrogen species
A major effector mechanism of neutrophils is their ability to

produce and release antimicrobial products and reactive oxygen
species (ROS) upon encounter of pathogens. Correlating with the
accumulation of neutrophils, patients with active SLE display elevated
production of ROS by circulating neutrophils and increased levels of
oxidative damage in kidney biopsies [43-46]. Abnormal oxidative
protein modifications have also been associated with disease
development in MRL/lpr lupus-prone mice and increased immunity in
rabbits [47,48]. Increased ROS production could be a result of
accumulating neutrophils as described above, or a consequence of
decreased expression or inhibited function of superoxide dismutase
(SOD1). SOD1 is a critical antioxidant involved in the consumption of
free oxygen radicals that has been shown to be significantly reduced in
SLE patients with active disease [49,50]. Alternatively, a polymorphism
in the gene neutrophil cytosolic factor 2 (NCF2) encoding for p67phox,
a critical component of the NADPH oxidase and thus involved in the
production of ROS, has been found in several cohorts of SLE patients
[51,52].

Cytokine production
While the mechanisms of tissue damage are not completely

characterized, cytokine and chemokine production by inflammatory
myeloid cells have been observed in both SLE patients and several of
the murine models of lupus. As such, many cytokines have been
associated with the initiation and progression of lupus including
interleukin-6 (IL-6), IL-10, IL-17, IL-18, IL-21, tumor necrosis factor-
alpha (TNFα) and interferon-alpha (IFNα) [53,54].

IFNα has received significant attention as PBMCs from SLE
patients often express elevated levels of IFNα-induced gene transcripts
[2,55,56]. IFNα is induced in response to a broad range of signals, but
most efficiently in response to intracellular toll-like receptors: TLR3,
TLR7, TLR8 and TLR9 [57]. Interestingly, chronic TLR7-stimulation
was recently shown to induce myelopoiesis leading to monocyte and
neutrophil accumulation in an IFNα-dependent manner [58]. The
most potent IFNα-producing cell type is the plasmacytoid dendritic
cell [59]; however neutrophils can produce IFNα under chronic
inflammatory conditions as well [22,60]. This is true in humans, as
well as in mice, and has recently been reviewed elsewhere [61].

B cell manipulating factors such as IL-6, IL-21, BAFF and APRIL,
can all be produced by neutrophils and have been associated with
lupus pathogenesis. IL-6 is a powerful regulator of B cell
differentiation and antibody production and manipulation of IL-6
levels affect lupus pathogenesis in both female (NZB x NZW)F1 mice
and pristane-induced lupus [62-64]. IL-21 is required for functional T
follicular helper (TFH) cell differentiation and the formation of
germinal centers (GC), and can be produced by neutrophils during
chronic inflammation. In SLE, such IL-21 may also lead to T-cell
independent B cell activation and differentiation [11]. Interestingly,
these cells also produced A Proliferation Inducing Ligand (APRIL),
crucial for plasma cell survival. Further evidence for communications
between neutrophils and B cells comes from studies showing that
tissue infiltrating, G-CSF-triggered neutrophils produce and secrete
BAFF under inflammatory conditions [65], while BM neutrophils
from SLE patients produce both APRIL and BAFF supporting early B
cell development and plasma cell survival [66].

Finally, in two recent studies of pristane-induced lupus, bone-
marrow derived neutrophils (Ly6GhiLy6Clow) were reported to
produce significant levels of TNFα and IL-17A, resulting in
myelopoiesis and the accumulation of neutrophil-like cells [67,68].
Interestingly, TNFα have been associated with many neutrophil
effector functions including ROS production, while IL-17A is
emerging as a key cytokine controlling both T and B cell dependent
immune responses [69,70].

NETosis
Neutrophils are known to release extracellular traps, known as

neutrophil extracellular traps or NETs, as a mechanism to immobilize
pathogens [4]. This process leads to the subsequent death of the
neutrophil; a process known as NETosis [71]. From a lupus
perspective, NETs offer an enticing source of nuclear antigen, as these
structures consist of strands of elastase covered with antimicrobial
proteins, such as MPO and LL37, alongside histones and free DNA
[4,21] and excellently reviewed in [61,72]. In support hereof, recent
data show that LL37/DNA-containing NETs effectively activate
plasmacytoid DCs via TLR9 cross linking resulting in IFNα
production [7]. Interestingly, the production of NETs by neutrophils
can also be induced by many inflammatory signals including IFNα and
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IC [7,8]. Finally, it has been shown that low density granulocytes
(LDGs) from SLE patients spontaneously undergo NETosis in vitro
[21,60], while NETs have been observed in cultures of Ly6ChighCD11b
+ neutrophils from pristane-treated lupus mice [73], further
supporting a role for NETs in lupus pathogenesis.

In addition to the spontaneous and chronic generation of NETs,
dysregulated removal of NETs may play a role in lupus pathogenesis
[74]. Removal of NETs relies on DNaseI activity, and impaired DNaseI
activity has been associated with kidney damage in lupus nephritis
patients and mouse models of SLE [74-76]. Moreover, the presence of
DNaseI inhibitors and anti-NET antibodies preventing DNaseI from
binding and degrading the NETs, have been identified in serum
samples from SLE patients [74], further adding to the pathogenicity of
NETs.

Anti-inflammatory Properties of Neutrophils in Lupus
The biological importance of immunosuppressive tumor-

infiltrating Ly6G+ and Ly6C+ myeloid cells was spearheaded by the
identification of ROS-dependent T cell suppression in cancer patients
[77] and numerous studies have since then explored the tumor-
promoting function of these cells in both mouse models and cancer
patients [78]. Recently, immunosuppressive functions of neutrophils
have been described in several studies of systemic inflammation and
autoimmunity including sepsis and SLE [11,12]. Still, the
mechanism(s) of suppression utilized by these cells remain to be
identified.

We recently reported the presence and function of populations of
regulatory Ly6G+Gr1highCD11b+ and Ly6ChighGr1lowCD11b+

neutrophils in the (NZB x NZW)F1 mouse model of SLE [13,28].
Since, lupus presents with an overwhelming female bias, we
hypothesized that such regulatory neutrophils could be a mechanism
preventing disease in otherwise genetically predisposed males.
Consistent with a sex-dependent immunosuppressive function, we
found that male (NZB x NZW)F1 mice express increased numbers of
Gr1+ cells throughout life [28] (Table 1). In young <9 week old lupus-
prone male, as well as female, (NZB x NZW)F1 mice, Ly6G
+Gr1highCD11b+ and Ly6ChighGr1lowCD11b+ neutrophils were found
to be immunosuppressive towards B and T cells, respectively. As
female mice aged, however, the cells lost their immunosuppressive
capability both in vitro and in vivo [13,28]. A similar loss of function
was also observed in males, albeit not until much later in life.
Interestingly, over time Ly6ChighGr1lowCD11b+ neutrophils became
immunostimulatory to both T and B cells, resembling the function of
pro-inflammatory LDGs as described above.

In addition to the temporal difference in immunosuppression
between male and female-derived Nregs, our studies also showed that
Ly6G+Gr1highCD11b+ and Ly6ChighGr1lowCD11b+ neutrophils not
only targeted different lymphoid cell populations in vitro, but also
utilized different immunosuppressive mechanisms [13,28]. For
example, female Gr1highCD11b+ cells depended on cell-cell contact
and utilized ROS/NO as their mechanism of inhibition in B cell
differentiation assays, while male cells exerted their suppressive
capacity via an unknown secreted, soluble factor ([28] and
unpublished results). These data are consistent with a study showing
that immunosuppressive Gr1-CD11b+ myeloid cells from MRL/lpr
mice suppress T cell proliferation in an arginase-1-dependent manner
[79], and the observation that MRL/lpr mice defective in ROS-
production display an accelerated disease profile [80].

Gr1highCD11b+ cells Gr1lowCD11b+ cells

Expression levels
(spleen)

Elevated in males

4-26 weeks of age

Elevated in females

(>9 wks)

Immunosuppressive in
vitro

Yes (females only <16
wk)

Yes (females only <9 wk)

Cellular target B cell differentiation T cell differentiation and
proliferation

Cell-Cell contact No (males);

Yes (females)

ns*

Effector mechanism Unknown (males);

ROS/NO (females)

ns*

Immunostimulatory in
vitro

No Yes (female ≥ 9wk old;
males >16 wk old)

All Gr1+ cells

Immunosuppressive in
vivo

Yes (males) No (females ≥ 9 wks of
age)

Cellular target GC reaction via control
of TFH cell
differentiation (males)

n/a

*ns: not studied; n/a: not applicable [13,28]

Table 1: Neutrophil-like cells differ in numbers and functions between
protected males and disease-prone females in (NZB x NZW)F1 lupus
mice.

Several lines of evidence suggest that the observed
immunosuppressive function in male lupus-prone mice is reminiscent
with the normal behavior of such cells. For example, studies in non-
autoimmune mice have shown that neutrophils can limit immune
reactions in response to inflammation or immunization ([81,82] and
our unpublished observation). In addition, complement factor 4
produced by myeloid cells may regulate spontaneous GC reactions in
self-reactive B cell receptor transgenic mice [14]. We therefore suggest
that the chronic inflammatory milieu developing in female (NZB x
NZW)F1 mice affect a population of regulatory neutrophils (Nregs)
either via the induction of apoptosis (or maybe even NETosis) [4,83]
or via the induction of a differentiation program driving the
development of non-immunosuppressive cells such as dendritic cells,
macrophages or mature neutrophils, as previously suggested [83-85].

Summary
There is still much to learn about pro- and anti-inflammatory

neutrophils, their effector functions and role in the pathogenesis of
SLE. We here suggest a model in which immunosuppressive
neutrophil-like cells (Nregs) constitute a normal regulatory
component involved in the control of adaptive immune responses
(Figure 1). We suggest that the normal function of Nregs is to control
TFH cell differentiation and GC reactions either directly via the
production of immunomodulatory cytokines affecting differentiation
of T and B cells or via the production of chemokines affecting the
assembly of GCs during T-dependent antibody responses. During
systemic inflammation (including infections, cancer, and SLE) Nregs
are targeted to either die, hereby promoting access to nuclear
autoantigens, or differentiate into pro-inflammatory dendritic cells,
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macrophages and mature neutrophils driving T and B cell activation
and eventually autoantibody production. Future studies identifying
factors targeting and changing the function of Nregs during chronic

inflammation (including SLE) may provide additional targets for early
intervention therapy in lupus-susceptible individuals.

Figure 1: Neutrophils in Lupus. Model suggesting that a subset of neutrophils (Nregs) possess regulatory abilities involved in the control of
humoral immunity. Under non-inflammatory conditions, such Nregs are located to the secondary lymphoid organs where they regulate T
and B cell responses to foreign antigen. During chronic inflammation (Lupus), neutrophils display pro-inflammatory abilities including the
production of IFNα and secretion of NETs by LDGs, and the production of reactive oxygen and nitrogen species involved in tissue damage by
mature neutrophils. Signals driving the generation of pro-inflammatory neutrophils may include estrogen, IC and cytokines, all of which are
associated with the development of lupus in genetically predisposed females.
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