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Abstract
The most frequent initial rhythm in out-of-hospital witnessed cardiac arrest is ventricular fibrillation (VF) and 

electrical defibrillation is still the only effective therapy for the termination of this life-threatening cardiac arrhythmia. 
Even though earlier defibrillation is greatly emphasized during cardiopulmonary resuscitation (CPR), unnecessary 
or repetitive high energy defibrillations are associated with decreased post-resuscitation myocardial function. 
Optimizing the timing of defibrillation is of great importance in order to discriminate patients should receive immediate 
defibrillation versus alternate therapies such as CPR. Since characteristics of VF waveform changes over time and 
with CPR, which exhibit predictable ability of defibrillation success, quantitative analysis of VF waveform has the 
potential to guide defibrillation. This article reviewed methods developed for VF waveform analysis (including time 
domain, frequency domain, time-frequency domain, nonlinear analysis, and combination analysis techniques) and 
their performances for the prediction of defibrillation outcomes in clinical settings. The retrospective meta-analysis 
confirmed that VF waveform could predict the return of organized electrical activity, restoration of spontaneous 
circulation, and survival reliably. Additionally, predictors based on time-frequency and nonlinear methods were 
superior to other methods on the whole. However, no prospective studies have been performed to identify the 
optimal time of defibrillation utilizing VF waveform analysis until now. Therefore, the value of VF waveform analysis 
to guide clinical countershock management still needs further investigation. 
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Introduction
Ventricular fibrillation (VF), which is characterized as rapid and 

disorganized contractions of the heart with complex electrocardiogram 
(ECG) patterns, is the most frequent initial rhythm in out-of-hospital 
witnessed cardiac arrest (CA) [1]. Electrical defibrillation, which 
consists of delivering of a therapeutic dose of electrical current to the 
fibrillating heart with the aid of a defibrillator, is still the only effective 
way to treat this life-threatening arrhythmia [2]. The probability of 
defibrillation success is inversely proportional to the duration of VF. 
Clinical data reported that for every minute passes between collapse 
and defibrillation, survival rates from witnessed VF decrease 7% to 10% 
if no cardiopulmonary resuscitation (CPR) is provided. With effective 
CPR, the success rate of rescue decreases 3-4% per minute [3]. Thus, 
early CPR together with early defibrillation is a key point in the chain 
of survival.

The fundamental importance of early defibrillation as a major 
predictor of outcome in patients with VF has been known since the 
introduction of external defibrillators [4]. However, emerging evidence 
showed that not all patients in VF might benefit from being treated 
in the same manner. Both animal and human studies demonstrated 
that defibrillation immediately after the onset of VF usually resulted 
in restoration of spontaneous circulation (ROSC). However, when the 
duration of untreated VF exceeded 4-5 minutes, initial CPR with chest 
compression before delivery of a defibrillation attempt improved the 
likelihood of restoring an organized cardiac electrical activity with 
pulses [5,6]. Unnecessary shocks can reduce chest compression time 
and can cause VF to deteriorate into asystole or pulseless electrical 
activity, which is more difficult to resuscitate [7,8]. On the other hand, 
repeated futile defibrillation attempts with high energy also associated 
with myocardial damage and resulting in reduced chance of survival 
[9]. For these reasons, the ability to gain information concerning the 
metabolic state of the myocardium and to optimize the timing of 

defibrillation would be of enormous benefit in allowing therapy to be 
tailored to an individual heart.

The optimal timing of defibrillation can be determined by 
evaluating the probability of shock outcome. If the shock attempt has 
a high likelihood of defibrillation success, an electrical shock should 
be prompted and delivered. Otherwise, unnecessary shocks should be 
avoided and alternate therapy such as CPR or medications, especially 
high-quality chest compression, should be utilized. Earlier investigations 
established that both the coronary perfusion pressure (CPP) and the 
end-tidal carbon dioxide (PetCO2) could serve as measurements of the 
effectiveness of chest compression and therefore as predictors of the 
likelihood of ROSC [10,11]. But real-time measurements of CPP and 
PetCO2 are not widely available during out-of-hospital settings. 

ECG waveform, which is routinely available in the current automated 
external defibrillators (AEDs), has been extensively investigated for the 
purpose of predicting the probability of defibrillation outcome [12]. The 
ECG signals recorded from the body surface represent the superposition 
of all of the electrical fields generated by each volume element of the 
heart [13]. Presumably, the organization of the surface ECG has some 
relationship to the underlying organization of the myocardial electrical 
activity. Since characteristics of VF waveform change over time and 
with CPR, which exhibits ability for prognostication of defibrillation 
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success, the quantitative analysis of VF waveform has the potential to be 
used to predict the VF duration and the probability of shock outcome, 
to optimize the timing of defibrillation, and to ultimately guide CPR 
interventions [14].

The observation that defibrillation success rate is higher during 
the initial period of CA where “coarse VF” with an amplitude greater 
than 0.2 mV is present, while success of defibrillation is greatly reduced 
at this stage of “fine VF”, is finally evolved to extensive quantitative 
analysis of ECG waveform [15]. Earlier animal studies demonstrated 
that duration of CA and defibrillation outcome can be predicted from 
amplitude and frequency variables obtained from VF waveform [16-
19], where the experimental conditions about animals were convenient 
to be controlled [20]. With widely application of AEDs, various VF 
analysis techniques, including time domain, frequency domain, time-
frequency domain, nonlinear analysis, and combination analysis 
techniques, have been adapted and developed to predict the probability 
of defibrillation outcome for patients who experienced out-of-hospital 
cardiac arrest (OHCA) [21]. In the past 20 years, considerable efforts 
have been made to further improve the predictive power of rescue shock 
measures. However, no prospective clinical study has been performed 
to validate the predictability of VF waveform with real-time analysis. 
This article reviews the methods used for VF waveform analysis and 
their performances for the prediction of defibrillation outcomes in 
clinical settings. The purpose of this study is to compare the advantages 
of different methods and their reliabilities for optimizing the timing of 
defibrillation in OHCA patients with retrospective meta-analysis. 

Literature Searches
An automatic search was conducted of the following electric 

databases: PubMed, EMBASE, Web of Science, ScienceDirect, and 
IEEEXplore, with the keywords such as “defibrillation prediction”, 
“ventricular fibrillation”, “waveform analysis”, “clinical”, and “success 
countershock”. In addition to these automated searchers, a manual 
search of key articles was conducted as well. All researches published 
between January, 1985 through March, 2013 were considered. Only 
papers published in English were included. As a result, a total of 186 
literatures were obtained. 

For study selection, the publications about myocardial infarction, 
atrial fibrillation, coronary artery, acute myocardial, waveforms of 
AEDs, and patients with implantable cardioverter defibrillators (ICDs) 
were excluded. Moreover, publications focused on the detection of 
shockable waveform rather than prediction of defibrillation success 
were also excluded [22,23]. Of the rest literatures, 1 repeated study was 
removed. As a result, a total of 33 studies that met our selection criteria 
were finally evaluated. Among the 33 studies, 14, 2, 2, and 2 were 
published in Resuscitation, Circulation, Annals of Emergency Medicine, 
and Anesthesia and Analgesia, respectively; the rest 13 studies were 
published in other medicine journals.

Methods for VF Waveform Analysis
The procedure for the prediction of defibrillation outcome using 

VF waveform analysis is shown in Figure 1. An episode VF signal 
with the duration of 1 to 10 seconds, which is immediately before the 
shock delivery, is usually selected from the surface recording. Due 
to the fact that preshock pause was independently associated with a 
decrease in defibrillation efficacy [24], and the recommendation that 
the delivery of a shock should be achieved with an interruption in chest 
compressions of no more than 5 seconds by European Resuscitation 
Council [25] , CPR artifacts may present in the recorded ECG signals. 

Additionally, the ECG signals recorded from AEDs may also include 
baseline drifts, powerline interferences, muscle movements, and so on 
[26-28]. A preprocessing step is usually employed to obtain the ‘pure’ 
ECG signals before the waveform analysis, including a notch filter to 
remove alternating current interference at 50-60 Hz, a high-pass filter 
to remove baseline drifting and CPR artifact, and a low-pass filter 
to remove the myographic noise [29-34]. After filtering, the features 
or characteristics of the VF signal extracted with different digital 
signal processing methods are then used to predict the probability of 
defibrillation success based on the established threshold or decision 
algorithm.

Based on the digital processing technologies are used, the methods 
or algorithms used to predict the shock outcome can be categorized 
into the following five groups: time domain methods, frequency 
domain methods, time-frequency domain methods, non-linear 
dynamic methods of randomness and complexity, and the combination 
of different methods.

Time domain methods

Predictors obtained from time domain describe the characteristics 
of waveform amplitudes, phases or voltages. Peak-to-peak amplitude 
(PPA), which is defined as the difference between the maximum and 
minimum recorded ECG voltage within a given window, was shown to 
be a powerful indicator of defibrillation outcome by Weaver et al. [15]. 
Monsieurs and colleagues proposed a survival index, which is calculated 
as the weighted sum of the VF amplitude and the number of base-line 
crossings per second, to discriminate potential survivors from non-
survivors [35]. The mean amplitude, representing the mean absolute 
deviation from the mean of the waveform, was used to predict ROSC 
by Hamprecht and colleagues [36]. Median slope (MdS) and mean 
slope (MS), which represent the average steepness of the waveform, 
reflect both the amplitude and frequency information of VF. Joar et 
al. [37] analyzed the median slope (MdS) in relation to VF duration 
and the rhythm before onset of VF, which indicated MdS could be used 
for shock outcome prediction. Neurauter and colleagues studied MdS 
and MS originated from a range clearly above a lower edge frequency 
to predict the shock outcome [38]. The extrema of phases, which are 
defined as the phases of a VF interval immediately before countershock, 
were found to be sinusoidal with the probability of success defibrillation 
attempts by Suzuki and colleagues [39]. 

Amplitude, slope, and phase of VF are not only dependent on 
the duration of VF but are also affected by other factors: interference, 
physique, skin resistance, size and position of electrodes, lead ways, and 
recording conditions [13]. Additionally, the time domain methods do 
not utilize the temporal information to predict the defibrillation [40]. 
For these reasons, time-domain features or characteristics are probably 
crude predictors of defibrillation.

Frequency domain methods

Frequency domain features describe the frequency component 
characteristics of VF waveform. Each frequency component, 

Feature Extracting 
and Decision

Preprocessing
and Filtering

VF signal

Figure 1:  The flowchart of the prediction of defibrillation using waveform 
analysis
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representing globally averaged information, is computed over the 
clipped ECG segment. The calculated features from the fast Fourier 
transform (FFT) of VF signals, such as peak power frequency (PF) or 
dominant frequency (DF) [36,41-45], energy [38,46], maximum power 
(maximum value of the power spectral density (PSD)), power spectrum 
area (PSA), centroid power [38] , centroid frequency(FC) [38,44,46,47], 
median frequency(MF) [45,48,49], spectral flatness measure, fibrillation 
power, instantaneous mean frequency, frequency ratio and amplitude 
spectrum area (AMSA) [38], were shown to be capable of predicting 
defibrillation success.

PF (DF), which is defined as the highest peak in the resulting 
spectral density, was shown to be predictable of the countershock 
success by Stewart et al. [41]. FM is calculated as the mean of all of 
the contributing frequencies weighted by the power at each frequency 
and was found to be predictive shock outcome by Martin et al. [50]. 
The energy calculated by adding up the single power values of the PSD, 
was adopted to predict defibrillation outcome of VF [46]. FC, which 
is defined as frequency coordinate of the center of the spectral mass, 
served as a predictor of the success of electrical defibrillation as well 
[38,44,46,47]. Similarly, centroid power, which is defined as power 
coordinate of the center of the spectral mass, was used to predict 
the countershock success by Neurauter et al. [38], Hamprecht et al. 
[36] defined the fibrillation power as integral over the fibrillation 
contribution to the PSD and compared its performance with dominant 
frequency and mean amplitude. AMSA, calculated as the sum of 
contributing frequencies weighted by the absolute values of the Fourier 
transform of the VF signal, describes the amplitude-weighted mean 
frequency. AMSA was found to be positively related to the probability of 
successful restoration of cardiac rhythm by Young et al. [51]. Neurauter 
and coauthors [52] evaluated the predictabilities of PSA, which is 
computed in a similar way to AMSA using PSD instead of amplitude 
spectral density, and other features from different sub-bands of VF in a 
retrospective clinical study.

Frequency domain features are robust and less affected by external 
factors than the time-domain features [53]. The fundamental problem 
of frequency domain methods is that FFT analysis is only suitable for 
stationary signals whereas the ECG signals are non-stationary and non-
linear. 

Time-frequency domain methods 

The continuous or discrete wavelet transform resolves the weakness 
of frequency domain analysis by providing concomitant spectral and 
temporal information, allowing a local scale-dependent spectral analysis 
of signal features. Wavelet-based PF, energy, mean frequency, spectral 
flatness, and entropy were investigated by Watson and colleagues to 
predict shock outcome using Bayesian statistics [54]. 

Cardioversion outcome prediction (COP) (i.e. the wavelet-entropy 
marker), which is used as a metric of the temporal behavior of the 
signal, can provide an index for the defibrillation identification by 
Watson and colleagues [49]. Box et al. [55] adopted COP to analyze 
the ECG data record and provided confidence in the robustness of the 
technique across hardware platform. Gundersen et al. [47] also adopted 
COP, which yielded the best mixed effects models, for shock outcome 
prediction. 

The total mid-band (3–10 Hz) energy spectrum analysis based on 
continuous wavelet transform was studied by Endoh and colleagues 
using logistic regression analysis to predict defibrillation [40]. 
Features from dual-tree complex wavelet domain were developed for 
defibrillation outcome prediction by Shandilya and colleagues [28]. 

Non-linear dynamic methods

Earlier researches confirmed that VF is a complex non-linear 
pattern formed by drifting spiral waves of electrical activity (vortices 
and rotors) that travel across the myocardium and subsequently break 
down [56,57]. VF waveform may actually be produced by deterministic 
mechanisms characteristics of dynamic non-linear system. Early 
VF was shown to contain an 80-90% deterministic component by 
a complex mathematical algorithm [58]. There are several reported 
non-linear features to predict VF defibrillation success, such as 
the scaling exponent (ScE), Hurst exponent, the logarithm of the 
absolute correlations (LAC), self-similarity dimension, and detrended 
fluctuation analysis (DFA). 

The ScE is an estimate of the fractal self-similarity dimension. 
Callaway and colleagues [59] assessed the ability of ScE to predict 
the success of defibrillation. The Hurst exponent, which is used as a 
measure of long term memory of time series, was included in a model 
to predict successful defibrillation attempts by Podbregar et al. [60]. 
Irregularity, which is a direct indicator of chaotic behavior, was found 
to be associated with successful defibrillation by Jagric and colleagues 
[61]. LAC, which quantifies how individual parts of a signal are self-
similar at different points along its length, was proposed by Sherman 
and coauthors to provide prognostic information regarding the 
duration of VF by measuring the roughness of the VF waveform [62]. 
DFA, which determines the statistical self-affinity of VF waveform, was 
used to assess the duration of a VF crisis by Rodriguez et al. [63]. Lin 
and coauthors [64] applied the DFA on the VF signal analysis to predict 
the defibrillation success. 

Though the VF waveform analysis based on the dynamic non-linear 
achieved some improvement in predicting successful defibrillation, the 
non-linear dynamic method is sensitive to the noise and interference. 

Combination of several methods

The combinations of individual measurements based on different 
methods above have also been employed to predict shock outcome. 
Brown et al. [44] carried out a retrospective analysis of VF signals using 
4 features and reported that the combination of FC and PF performed 
better than other combination and may be used to predict countershock 
success or to guide therapy during CA. Jekova [65] analyzed a set of 10 
parameters reflecting the frequency characteristics, the variations, the 
complexity, the periodicity and the symmetry of the ECG signals using 
linear discriminant functions of the 10-dimensional vector. Gundersen 
and colleagues [47] analyzed 6 predictive features: AMSA, MS, MdS, 
COP, mean amplitude, and FC using the complete recordings of ECG 
waveforms. Random effects for each single ECG-feature and the best 
combination of features performing a forward and a backward search 
were tested, respectively. 

Eftestøl and colleagues [43,46] combined two decorrelated spectral 
features based on the principal component analysis (PCA) of an original 
feature set with information on FC, peak power frequency, spectral 
flatness and energy, using multidimensional information in a single 
reproducible variable reflecting the probability of defibrillation success. 
Watson and colleagues [54] analyzed the performance gained through 
the combination of PF, energy, mean frequency, spectral flatness, and 
entropy measure, when PCA was applied to the combination of features. 

Podbregar and colleagues [60] studied the predictive power of a 
model developed by genetic programming (GP) on the complete VF 
database including maximal amplitude, total energy of power spectral 
density, and the Hurst exponent to predict defibrillation success. 
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Neurauter and colleagues [38] applied neural networks on single-
feature combinations to optimize the prediction of countershock 
success. Time domain features (e.g. mean amplitude, PPA, and MS) 
and frequency domain features (e.g. PF, centroid power, and the PSA) 
were calculated from the re-countershock VF ECG signal. Shandilya 
and colleagues [28] focused on time-series and complex wavelet 
integration of multiple features through machine learning techniques, 
training and testing 6-10 features for each test fold with nested 10-fold 
cross validation. Identification of the most discriminative features and 
correlated variables were conducted by the supervised feature selection. 
A parametrically optimized support vector machine model was trained 
for predicting outcomes. 

The combination method synthesizes several single features by 
linear discriminant functions, neural networks, GP, and so on. Thus, 
the computing power is prodigious and time consuming, which may 
not satisfy the computational requirement of AEDs.

Results 
Definition of defibrillation success

There is no consistent definition of defibrillation success of the 
related publications [28]. According to the literatures, two definitions 
were commonly adopted in the studies of countershock prediction as 
standard of successful defibrillation: (1) defibrillation was considered 
to be successful with resulting in an organized rhythm seen at 5 second 
after delivery of the shock regardless of palpated pulsation of the 
common carotid artery by Koster et al. [66]; (2) successful defibrillation 
was defined as those attempts which result in ROSC sustained for a 
period greater than 30 seconds and originating within a minute of the 
applied shock by Watson et al. [49]. 

In this clinical review, we broadly classify outcomes into three 
categories based on the definitions of defibrillation success in each 
article. The first one is return of organized electrical activity (ROEA) at 
least 5 seconds following countershock including termination of the VF 
and return of a stable supraventricular rhythm, termed as Definition 
1. The second one is ROSC, which generates a pulse regardless of the 
duration at least 30 s without continuing CPR, termed as Definition 2. 
The palpated pulsation of the common carotid artery is an important 
sign of ROSC differing from the ROEA. The third one is the most 
rigorous definition, as the survival at least 6 hours after resuscitation or 
with discharge from the hospital, termed as Definition 3. 

According to the three categories of definition of successful 
defibrillation, the clinical performances of defibrillation predictors are 
listed in the following three tables. Table 1 corresponds to Definition 
1, Table 2 presents the results according to Definition 2, and Table 3 
shows the performances using Definition 3. Only the predictor with the 
best performance is listed in the three tables, if several predictors were 
analyzed in one study.

Retrospective analysis results

Results of different defibrillation prediction methods in the 
literatures are commonly presented in terms of sensitivity, specificity, 
and area under receiver operating curve (ROC) curve (AUC). 
Sensitivity is defined as the proportion of shocks that are successfully 
defibrillated which are correctly identified, specificity is the proportion 
of failed shocks that are correctly identified [49], and AUC is defined 
as the area under the ROC curve. A trade-off in sensitivity and 
specificity achievable by a system is described by plotting sensitivity/
specificity pairs in a ROC curve. AUC provides an indication of the 

system effectiveness. The larger the AUC value is, the better the system 
performance presents. An ideal case is that an area equals to unity where 
sensitivity is one for all specificities. Other unusually criteria such as 
the accuracy [28], the odds ratio (OR) [67], and the Wald value [40] 
that adopted to evaluate the performances of different defibrillation 
predictors were not analyzed in our results.

A total of 7 studies reported their data according to Definition 1 
(Table 1). Sensitivity ranges from 61% to 100% with an average value 
of 87.4%, specificity ranges from 14% to 97% with the averaged value 
55.3%. Among the 7 features, MF, PPA, PF and a combination by GP 
achieve the highest sensitivity 100%. A combination by GP achieves the 
highest specificity 97%. Two studies reported their results of AUC, with 
0.65 for DFA and 0.77 for FC based on CWT. 

A total of 20 studies reported their data according to Definition 
2 (Table 2). Sensitivities range from 59% to 100% with the averaged 
value 89.7%. COP and a combination of PF and FC achieve the 
highest sensitivity of 100%. Specificities range from 32% to 97% with 
the averaged value 61.2%. Among the 14 investigated features, AMSA 
achieves the highest specificity of 97%. AUC values range from 0.77 to 
0.94 with the averaged value 0.86. The feature based on complex wavelet 
transform with addition of the PetCO2 signal achieves the highest AUC 
of 0.94.

A total of 6 studies reported their data according to Definition 
3 (Table 3). Sensitivities range from 54% to 96.7% with the averaged 
value 78.4%. PPA achieves the highest sensitivity 96.7%. Specificities 
range from 22.7% to 98% with the averaged value 70.7%. Among the 5 
investigated features, PPA achieves the highest specificity 98%. The only 
reported AUC value is 0.84 achieved by SE. 

Meta-analysis (Review Manager 5.2.4) was utilized to evaluate the 
effects of successful defibrillation definition and methods used for VF 
waveform analysis on the performance of the predictability. All of the 
predictors were included for meta-analysis to enhance the reliability if 
more than 1 indicator was investigated for each study.

The results of meta-analysis based on the definition of defibrillation 
success are listed in Table 4. Characteristics of VF waveform can reliably 
predict defibrillation outcome with the use of definition of ROEA, 
ROSC and survival. The odds ratio (OR) for prediction of ROEA is 
significantly higher than those of ROSC and survival. The results 
listed in Table 5 revealed that time-frequency and nonlinear methods 
outperformed other techniques with relative higher OR when ROSC is 
served as shock outcome.

Discussion
The duration of VF is a major determinant of counter shock 

outcome. However, it is difficult to establish the prior duration of VF 
in clinical settings. An ideal predictor of defibrillation shock outcome 
would enable the rescuers to provide the most appropriate therapy 
for the patient, and could be implemented into existing AEDs with 
less computing power. Many clinical studies have been performed to 
measure the characteristics of VF waveform and predict the likelihood 
of successful defibrillation. However, there is still no clinical standard 
has been postulated as the threshold of the reliability of shock prediction. 

A sensitivity of 95% and specificity of 50% was suggested as safe 
and useful predictor for the treatment of VF by Neurauter et al. [38,73]. 
Based on the reported results, a combination of PPA, total energy of PSD 
and Hurst exponent with GP algorithm outperformed other indicators 
for the prediction of ROEA, with a sensitivity of 100% and specificity 
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Year Author Predictor Data AUC SES(%) SPE(%)
1991 Dalzell et al. [68] PPA 70 patients within or outside hospital / / /
1994 Strohmenger et al. [48] MF 20 patients during aortocoronary bypass grafting / 100 /
1997 Strohmenger et al. [45] PPA and PF 26 patients with OHCA / 100  25

2003 Podbregar et al. [60]
Combination of PPA, total 
energy of PSD and Hurst 
exponent by GP

47 patients with OHCA (79 success shock, and 124 
unsuccess shock) / 100  97

2010 Lin et al. [64] DFA(DFAα2) 155 OHCA subjects (37 successful and 118 
unsuccessful defibrillations) 0.65 61 63.2

2011 Endoh et al. [40] FC based on CWT 152 patients with OHCA(164 unsuccessful and 69 
successful episodes) 0.77  76.8 62.8

2012 Shanmugasundarama 
et al. [67] Slope

44 patients with OHCA:
In recurrent VF / 91 14

In shock-resistant / 83 70

SES, sensitivity; SPE, specificity; “/ ” denotes the corresponding values were not reported. 
Table 1: Performance of defibrillation predictors using Definition 1.

Year Author Predictor Data AUC SES(%) SPE(%)
1991 Martin et al. [50] MF 7 patients / / /

1996 Brown et al. [44] Combination of PF and FC in 
certain ranges 55 patients with OHCA / 100 47.1

2000 Eftestol et al. [46] Combination of FC and PF 156 patients with OHCA (total 868 shocks:87 had 
caused ROSC and 781 had failed to cause ROSC ) / 92 ± 2 42 ± 1

2001 Strohmenger et al. [69] DF 89 patients with OHCA / 92 42

2001 Eftestøl et al. [43] Combination of CF and the 
energy

156 patients with OHCA (total 883 shocks:87 had 
caused ROSC and 781 had failed to cause ROSC ) / 91 ± 3 36 ± 4

2001 Hamprecht et al. [36] DF 54 patients with OHCA (artefact-free ventricular 
fibrillation episodes, 28 return to ROSC) / 59 52

2004 Jekova et al. [70] Energy between 2 and 7 Hz more than 700 out-of-hospital fibrillation cases / 61.8 79.6

2004 Young et al. [51] AMSA 46 patients with OHCA / 91 94

2004 Watson et al. [54] Entropy measure based on 
Morlet wavelet 87 success shock and 781 unsuccess shock / 91 ± 2 60 ± 6

2005 Watson et al. [49] COP based on a tunable Morlet 
wavelet 110 patients with OHCA / 97 ± 2 63 ± 4

2006 Watson et al. [71] COP based on CWT 110 patients with OHCA / 95 ± 4 66 ± 4

2007 Neurauter et al. [38] MdS 197 patients with in-hospital and out-of-hospital CA 0.848 95.2 52.6

2007 Jagric et al. [61] Irregularity 120 recordings of VF / / /

2008 Gundersen et al. [47] COP  86 patients with OHCA 0.877 / /

2008 Box et al. [55] COP based on wavelet transform 54 patients with OHCA / 100 60

2008 Sherman et al. [62] LAC 158 patients with OHCA 0.77

2008 Ristagno et al. [72] AMSA 90 patients with OHCA / 91  97

2008 Neurauter et al. [73] MdS(10-22Hz) 192 patients with in-hospital and out-of-hospital CA 0.863 95.2 49.7

2012 Nakagawa et al. [74] AMSA 83 patients with OHCA / 94 59

2012 Shandilya et al. [28] Feature based on complex 
wavelet transform 

57 patients (34 successful and 56 unsuccessful 
defibrillations)
ECG signals without addition of the PetCO2 signal

0.850  90 78.6

With addition of the PetCO2 signal 0.938 / /

SES, sensitivity; SPE, specificity; “/ ” denotes the corresponding values were not reported. 
Table 2: Performance of defibrillation predictors using Definition 2

Year Author Predictor data AUC SES(%) SPE(%)

1985 Weaver et al. [15] PPA 394 patients / 96.7 22.7
1992 Stewart et al. [41] PF 56 patients in hospital and in the community / / /

1998 Monsieurs et al. [35] Survival index
100 patients with OHCA / 79 70

If adding age / 86 73

2003 Goto et al. [42] DF 47 patients with OHCA / 76.5 90

1993 Callaham et al. [75] PPA 265 patients in prehospital VF / 54 98
2001 Callaway et al. [59] SE 75 subjects with OHCA 0.84 / /

SES, sensitivity; SPE, specificity; “/ ” denotes the corresponding values were not reported. 
Table 3: Performance of defibrillation predictors using Definition 3.
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of 97% [60]. MdS [38,73], AMSA [74], and COP based on wavelet 
transform [49,55,71] could reliably predict ROSC with a sensitivity of 
95% and specificity above 50%. Whereas no indicator could predict 
survival with a sensitivity of 95%, even all of the reported specificities 
were above 50%. A shortcoming of direct comparison of sensitivity and 
specificity is the trade-off in threshold selection for the classification. 
As the ability to correctly identify successful shocks increases, the 
proportion of correctly identified failed shocks will decrease. For this 
reason, a balance between sensitivity and specificity and both above 
70% may be considered as a reliable predictor, such as AMSA [72] and 
slope [67] for the prediction of ROEA, AMSA [51] and features based 
on complex wavelet transform [28] for the prediction of ROSC, and 
survival index and DF for the prediction of survival.

The AUC, which represents the expected performance of a binary 
classifier system with a single value, does not affected by the selected 
threshold. Among the studies that reported AUC, MdS [38,73], 
COP [47] and feature based on complex wavelet transform [28] for 
the prediction of ROSC, and SE [59] for the prediction of survival 
outperformed other methods with an AUC value great than 0.80.

  The meta-analysis confirmed these results. The time-frequency 
and nonlinear methods perform better than methods based on time 
domain, frequency domain and the combinations [59,60,64]. Predictors 
based on wavelet transform are superior to the frequency predictors 
and the nonlinear predictors [28, 40,47,49]. Even though a previous 
study reported that the combination of decorrelated features presented 
better performances than a single feature [44,46], meta-analysis based 
3 combination methods in Table 5 shows that combination of single 
predictive features does not improve outcome prediction, which is 
consistent with Neurauter’s result [38]. 

The preprocessing algorithms may also affect the accuracy of shock 
outcome prediction. The filtered ECG signals or CPR-artifact-free ECG 
signals presented better results than the ECG signals with CPR artifacts 
and without preprocessing [73]. Moreover, some studies employed 
peripheric information, e.g. age, sex, and PetCO2 signal, to enhance the 
performances of defibrillation predictors [28,35]. 

From the results in Tables 1-3, we can see that the highest sensitivity/
specificity pair is achieved with the definition of ROEA (in bold). The 
meta-analysis results shows that a better performance is obtained with 
the definition of ROEA for the prediction of defibrillation outcome 
compared with those of and ROSC and survival. The reason is that 
Definition 1 includes the case of ROSC, which means patients who 
achieved an organized cardiac rhythm may fail to ROSC. Similarly, 
Definition 2 includes the case of survival and discharge from hospital 
since patients who achieve ROSC may die within a few hours due to 

post-resuscitation cerebral injury and myocardial dysfunction. Post-
resuscitation care interventions such as therapeutic hypothermia can 
significantly improve both the neurological recovery and survival after 
resuscitation from CA.

Limitation
There are several limitations need to be addressed for this review 

analysis. Firstly, the durations of VF waveform that used to be analyzed 
are different from individual studies. According to the reported results, 
an episode of 1 to 10 seconds is usually selected from the surface ECG. 
However, effect of window length on the performance has not been 
systematically investigated. Secondly, although the filtered ECG signals 
or CPR-artifact-free ECG signals are reported to have better results than 
the ECG signals with CPR artifacts and without preprocessing, whether 
the application of different filtering methods, such as adaptive filtering 
improve the predictability is still unknown. Thirdly, the waveform design 
is significantly differ among manufactures, therefore the reliability of 
VF waveform analysis with the use of different defibrillation waveforms 
needs to be researched. Fourthly, meta-analysis revealed that time-
frequency and nonlinear methods are superior to other techniques, but 
only a few papers present results of direct comparisons between various 
methods. The interpretation may be biased due to different patient 
number, analytical measurement and post-shock annotations.

Conclusion
Recent clinical studies verified that it is possible to predict 

defibrillation success from the VF waveform with varying reliability. 
Digital signal processing techniques based on amplitude, slope, 
spectrum, energy, wavelet transform, fractal, entropy, advanced machine 
learning, and so on, have been applied/proposed to extract features 
and make decisions for the optimal timing of defibrillation based on 
surface ECG waveform. Among these techniques, time-frequency and 
nonlinear methods outperform time domain and frequency domain 
methods. A better performance is obtained for the prediction of 
defibrillation success with a short term outcome definition, i.e. ROEA. 
The combination of single features derived from VF waveform does not 
further increase the predictability. But the performance of defibrillation 
predictors may be improved by incorporating patient information and 
other physiological measurements. 
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