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Abstract

Non-small cell lung cancer (NSCLC), the most frequent lung cancer (80%), can be phenotypically classified into
two main subtypes: squamous cell carcinoma (SCC) and adenocarcinoma (ADC). While SCC has relatively rapid
doubling times from the onset, ADC has longer doubling times initially that become reduced during tumor
progression, suggesting a key role for the microenvironment. During lung tumor progression, a complex and
dynamic interplay occurs between proliferating tumor cells and stromal, endothelial and immune tumor-conditioned
host cells within the tumor microenvironment (TUMIC). Several factors within the TUMIC, such as hypoxia, cytokines
and soluble factors, appear to blunt the anti-tumor immune response and polarize immune cells towards a pro-tumor
phenotype. Phenotypically and functionally altered immune cells found in cancer patients include macrophages,
neutrophils, myeloid, dendritic, and even NK cells. We studied tumor infiltrating (TINK) and tumor associated (TANK)
NK cells in NSCLC. NSCLC TINKs and TANKs show similarities to decidual NK cells, being polarized toward tissue
builders, rather than killers, and producing pro-angiogenic cytokines. The functionally polarized immune cells in
NSCLC provide the stromal support and neovascularization required for NSCLC tumor expansion and progression in
a feed-forward mechanism, leading to tumor progression. Further, systemic alterations of immune cells are also
present in NSCLC patients. The precise knowledge of these immune cell alterations within the TUMIC has become
crucial for diagnosis, targeted therapeutic intervention, as well as prevention, of NSCLC cancer.
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Introduction
Lung cancer, a predominant cause of cancer-related mortality in the

developed world, is a heterogeneous disease with several histological
subtypes. Approximately 80% of all lung cancers are non-small cell
lung cancer (NSCLC). NSCLC can be phenotypically further divided
into two main subtypes: squamous cell carcinoma (SCC) and
adenocarcinoma (ADC) [1]. Standard chemotherapeutic treatments
for this devastating disease are only partially effective, and show
considerable toxicity, with only fewer than 20% of patients surviving
after 5 years from diagnosis; the median survival is less than one year
for metastatic disease [1,2]. Surgery represents a valid treatment for
early disease, yet still most lung cancers are diagnosed when they
become symptomatic and therefore at very late stages. Hence,
alternative and innovative therapeutic strategies, including
immunotherapies, are urgently needed.

Although in the past lung cancer was not considered an immune-
sensitive malignancy, currently there is increasing evidence that both
principal NSCLC subtypes can evoke specific B and T cell immune
responses. For this reason, in addition to standard intervention
approaches, numerous research groups focus their efforts on studying
the active specific stimulation of the host’s own immune system,

termed “therapeutic vaccination”, such as genetically modified
autologous tumor cells secreting immune-modulating cytokines,
allogenic tumor cells, tumor antigen-pulsed dendritic cells (DC), or
therapeutic immune-modulating agents reversing check-point
blockades, in particular anti-CTLA-4 or anti-PD-1.

When isolated from host components, tumors cannot expand in
mass, they remain a small, clinically indolent disease [3]. For tumor
expansion and progression, tumor cells must interact with several
host-derived cells consisting of stromal, inflammatory, immune and
endothelial cells (ECs) that delineate a complex modified tissue
compartment, termed the tumor microenvironment (TUMIC) [4].
Accumulating evidence shows the importance of TUMIC in shaping
the tumor mass fate, regulating growth, progression, invasiveness,
dissemination and clinical outcome. Among the host-dependent
biological features of the tumor hallmarks defined by Hanahan and
Weinberg [4] there are “evading immune destruction” and “tumor-
promoting inflammation”, which together with the immune
orchestration of angiogenesis, points out the key role of the immune
system in neoplastic disease [5,6].

Tumor progression leads to tumor immune escape through an
array of known and as yet unknown mechanisms. Thorough
knowledge of these mechanisms and the resulting clinical situation
will be fundamental to plan adequate active anti-tumor intervention in
combination with conventional treatment modalities such as surgery
and chemotherapy.
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It is now clear that the TUMIC polarizes immune cells, in particular
the innate compartment, (macrophages, myeloid-derived suppressor
cells (MDSCs), regulatory dendritic cells (regDCs)), yet the TUMIC
also has an influence on mast cells, cancer-associated fibroblasts
(CAFs) and adaptive immunity. Recent data have shown that NK cells
are also skewed to a pro-tumor pro-angiogenic phenotype in NSCLC
[7-9]. The inflammatory response originating within the TUMIC is a
crucial step of the disease, tightly linked to the tumor angiogenesis
along with repression of adaptive immune system [6,10].
Tumorigenesis and progression are promoted by different molecules
produced within the TUMIC, including pro-angiogenic factors and
extracellular matrix-modifying enzymes that facilitate angiogenesis,
invasion, and metastasis [11-14]. Moreover, inflammatory cells, by
releasing reactive oxygen and nitrogen species, can accelerate genetic
mutation events, thereby inducing a faster evolution toward
malignancy [12,15].

Major NSCLC subtypes: adenocarcinoma and squamous cell
carcinoma

In the past the two major clinical subtypes of NSCLC,
adenocarcinoma and squamous cell carcinoma, were treated more or

less the same. However, they are quite distinct biologically and
clinically. More than two decades ago the studies of Arai et al. [16]
showed that surgically resectable SCC features a volume doubling time
about 25% shorter compared to resectable ADC. In the same case
series, the faster doubling time was a negative prognostic factor, as the
SCCs were, on average, more aggressive clinically [16]. At the Center
for Thoracic Surgery of the University of Insubria we studied a series
of 116 resectable lung cancers, and confirmed that the median tumor
volume doubling time of SCC is significantly shorter than that of
ADC, both in screen-detected and in incidentally detected NSCLC
patients (Table 1). In addition, among the NSCLC cases diagnosed by
CT imaging, a technology that identifies tumors at a very early stage,
the ADCs with a minimally invasive phenotype (formerly known as
bronchioloalveolar carcinomas-BAC) show very long doubling times
[17,18]. However, ADCs at later stages appear to have more rapid
doubling times, suggesting that while SCC starts out with a rapid
doubling time, ADC shows a more complex evolution over time. The
biological diversity of the two main NSCLC subtypes is further
underlined by their different response to currently available
chemotherapy regimens and targeted therapies.

Mode of lung cancer detection Adenocarcinoma (n=69) Squamous cell carcinoma (n=47) P°

Chest X-ray screening*    

n. of pts 25 16

Median TVDT, days 109 80 0.0347

(IQR) (91-185) (56-108)  

Incidental**    

n. of pts 44 31  

Median TVDT, days 227 95 0.0108

(IQR) (108-349) (64-230)  

P° (screening vs. incidental) 0.0099 0.2128  

^TVDT calculated according to Schwartz formula [194] after comparison of two consecutive chest X-rays or CT-scans.

°Mann-Whitney test

*Annual repeat screen during population-based chest X-ray screening programme carried out in the Province of Varese, Italy in 1997-2011 [195].

**Asymptomatic subjects with incidental NSCLC detection, for whom previous imaging study was available for tumor size comparisons.

TVDT: Tumor Volume Doubling Time; IQR: Interquartile Range (25%-75%).

Table 1: Median tumor volume doubling time (TVDT)^ of 116 non-small cell lung cancers (NSCLC) by histology and by mode of detection (case
series 1997-2011, Center for Thoracic Surgery, University of Insubria).

Currently, targeted therapies are used almost exclusively in lung
ADC, and the distinction between subtypes is imperative not only in
advanced but also in early stage NSCLC undergoing surgical resection,
to optimize treatment in case of relapsing disease [19]. The epithelial
growth factor receptor (EGFR) inhibitors erlotinib, gefitinib and
afatinib are selectively indicated for treatment of NSCLCs with EGFR
mutations, which predominantly occur in ADCs [20]. Similarly, the
EML4-ALK rearrangement occurs predominantly in ADC cells [21],
and it is associated with susceptibility to the targeted agent crizotinib,
although acquired drug resistance almost inevitably develops [22].
Importantly, the angiogenesis inhibitor bevacizumab and the folate
anti-metabolite pemetrexed are excluded from use in patients with
SCC, as treatment with these molecules has been associated

respectively with the occurrence of life-threatening hemorrhages or
with lack of effectiveness [23].

Different “actors” and “scenarios” in the tumor
microenvironment

Macrophages and tumor-associated macrophages:

Macrophages are innate immune cells characterized by high
plasticity associated with nearly opposite functional programs induced
by different microenvironment signals [24]. Crucial functions of
macrophages range from phagocytosis, induction of inflammation,
recognition and elimination of invading pathogens, antigen
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presentation and for resolution of inflammation and tissue repair,
remodeling and maintenance of tissue homeostasis [25]. Two main
subtypes of macrophages have been characterized: M1 (classically
activated) macrophages, that possess high anti-microbial activities,
pro-inflammatory function and display anti-tumor activity, mediated
for example by production of reactive nitrogen and oxygen
intermediates, and by synthesis of pro-inflammatory cytokines, and
M2 (alternatively activated) macrophages that, conversely, are
involved in tissue remodeling and repair activities, immune-
suppressive effects, pro-angiogenic and pro-tumor functions. M1
macrophages are also characterized by a high capacity for IL-12 and
IL-23 secretion, related to the induction or development of Th1
response, while M2 macrophages are closely related to the tumor-
associated macrophage (TAM) profile and associated with an IL-10
secretory phenotype associated with Th2 and immune-suppression
[24,25].

However, the M1/M2 macrophage paradigm represent extremes
across a gradient of macrophage polarization, thus macrophages can
display both M1 and M2 markers and M1 and M2 macrophages can be
present in the same tissue [24]. In this context, it is conceivable that
there is an evolving macrophage balance that integrates over time a
changing phenotype in response to the microenvironment, depending
on soluble tissue-derived signals and on cell-to-cell interactions,
including the presence of polarized T lymphocytes, Treg and NK cells
[26-28]. Experimental results have suggested that tumor-associated
macrophages (TAMs) are an heterogeneous cell population with cells
showing various degrees of polarization, also comprising Tie2-
expressing monocytes/macrophages (TEMs) [29], and other immature
myeloid cells, in particular myeloid-derived suppressive cells (MDSCs)
[27].

In the natural history of cancer, TAMs become switched early on to
an immature activation state, resembling the M2 macrophage
polarization program. This includes low production of reactive oxygen
species (ROS), poor release of inflammatory cytokines (IL-1β, IL-6,
TNFα and IL-12), enhanced release of anti-inflammatory cytokines
(IL-10), decreased efficiency in antigen presentation, an increase in
pro-angiogenic features and immune-suppressive functions [30,31].

Several studies performed on different transgenic mouse models
evaluating the potential role of TAMs in the tumor progression in vivo
demonstrate that up-regulation of TAM number is associated with
increased tumor growth [32], while their depletion or inhibition leads
to a relevant inhibition of tumor angiogenesis and progression [33]. In
multiple murine models of carcinomas, it has been well established
that TAMs acquire a predominant role in the regulation of tumor
angiogenesis, releasing crucial factors, such as vascular endothelial
growth factor A (VEGF-A), matrix metalloproteinase 9 (MMP-9) and
placental growth factor (PlGF) [26].

TAMs originate from blood monocytes recruited from the tumor
vasculature as well as from adjacent tissues by different types of tumor
microenvironment-derived chemokines (Figure 1), in particular M-
CSF (CSF-1), CCL2 (MCP-1), VEGF, Angiopoietin-2 (ANG-2), and
CXCL12 (SDF-1) [26,27,34-36]. TAMs represent a relevant part of the
inflammatory component infiltrating solid cancers, exerting a crucial
role in the regulation of cancer-related inflammation and tumor
progression [37]. Presence and quantity of TAMs have been correlated
with a poor prognosis for patients with diverse types of tumors,
including breast, prostate and bladder cancers [38,39].

Figure 1: M2 pro-angiogenic macrophage polarization and tumor-
associated macrophage in NSCLC. During tumor insurgence and
progression a complex and diversified interplay occurs between
tumor cells and stromal, endothelial and innate immune cells
within the TUMIC and in particular M2 macrophages and TAMs.
Several tumor-derived factors, such as hypoxia, chemokines e.g.
CXCL1, CXCL2, IL-8, VEGF or from tumor conditioned myeloid
cells, e.g. IL-6, CCL2, VEGF, MMPs, plasmin, and other molecules
could play a relevant role in the triggering of the angiogenic switch,
contributing to the tumor angiogenesis, lymphangiogenesis, the
invasive process, and metastasis.

Accumulating evidence has shown that different types of cytokines,
chemokines, growth factors and proteolytic enzymes can be produced
by TAMs and these molecules have been suggested to act as key
effectors in tumor angiogenesis and progression during the
“angiogenic switch” [40,41]. However, in the case of NSCLC, current
data are not conclusive concerning the prognostic role of the collective
TAM tumor infiltrate in term of recurrence-free survival and overall
survival. TAM density in NSCLC correlated with tumor IL-8 mRNA
levels and high microvessel counts, suggesting a role of TAMs in the
tumor angiogenesis [42,43], as well as with accelerated
lymphangiogenesis [44] (Figure 1). However, this scenario still
requires further investigation since there are still opposite and
conflicting results on the role of TAMs in NSCLC [45-49].

In lung cancer, TAMs have been suggested to support tumor
progression contributing to stroma formation and angiogenesis
induction through the release of platelet-derived growth factor
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(PDGF), in association with TGFβ production by the cancer cells [26].
Through production of proteases, including MMP-1,-2,-3,-9, and-12,
plasmin, urokinase-type plasminogen activator (uPA) and the uPA
receptor, macrophages can also regulate the degradation of the
extracellular matrix (ECM), weakening the connective tissue and
favoring enhanced infiltration and metastasis.

Interestingly, a gene profile study on primary NSCLC tissues
showed that TAMs are associated with higher gene expression of
cathepsin K, MMP-9, uPA, VEGF, PDGF, HGF and COX-2 [50] when
compared to monocytes from healthy donors. A high expression of
cathepsin was observed in NSCLC patients with a poor prognosis [51].
Moreover, higher gene expression of MMP-9 and VEGF-A in TAMs
were present in the later stage of disease as compared to early stages
(Figures 1 and 2), including in patients with lymph node metastasis
[50]. Functional studies using conditioned media derived from TAMs
demonstrated that these cells release soluble factors able to improve
cell lung cancer invasion and migration in vitro. TAM invasiveness has
been associated with their ability to release of MMP-9 and uPA while
targeting of these two molecules by mAbs significantly impaired TAM
invasion.

Hypoxia is a crucial condition for the development of several cancer
types, inducing the necessary microenvironment for tumor
establishment [52,53]. High TAM numbers accumulate in hypoxic
areas of tumors and this process can triggers a pro-angiogenic
program in these cells [54] as a function of IL-10 release, hypoxia and
polarization [31]. Therefore, infiltrating TAMs represent an indirect
pathway of promotion of angiogenesis, together with other tumor-
derived angiogenic molecules.

In a recent study on NSCLC adenocarcinomas [55], tumor
infiltration by M2 macrophages was directly correlated with metastasis
(Figure 1). These data highlight the role exerted by hypoxia in the
development of polarized TAMs through the activation of ERK
pathway. Further studies will be necessary to clarify which specific
transcription factors are involved in the macrophage polarization
process. Studies performed in the murine Lewis lung carcinoma (LLC)
model also demonstrated that TAMs were associated with metastasis
and angiogenesis both in vitro and in vivo. Tumor hypoxia selectively
promoted the in vitro M2 polarization of murine macrophages in
conjunction with stimulation of IL-6 [56]. IL-6 has been shown to be
involved as a crucial activator for the oncogenic transcription factor
STAT3 [56] that has been suggested to be involved in the M2
macrophage polarization [27] (Figure 1). Noteworthy, when hypoxia
and IL-6-induced murine M2 macrophages were injected with LLC
cells in vivo, the metastasis rate increased dramatically as well as the
proportion of CD31-positive cells as compared to controls, suggesting
a clear correlation between M2 macrophages and tumor angiogenesis
[56].

Lactic acid released from hypoxic murine tumor (LLC or B16) cells
supported the role of hypoxia in skewing functional M2 macrophage
polarization [57]. A by-product of anaerobic glycolysis, lactic acid
might play a crucial role in inducing expression of VEGF and arginase
1 (ARG1) in TAMs, a process that was mediated by hypoxia-inducible
factor 1 alpha (HIF-1α). These studies directly suggest that the
possibility to interfere with the M2-type polarization during tumor
progression could represent an innovative therapeutic intervention
strategy [58,59]. In vitro endothelial cell chemotaxis assays performed
on human peripheral mononuclear cells exposed to conditioned media
of the Calu 6 and A549 NSCLC cell lines showed a marked increased
in monocyte angiogenic activity. This was correlated with enhanced

levels of CXC chemokines: IL-8 (CXCL8), CXCL5, and CXCL1.
Interestingly, macrophage angiogenic activity was enhanced by tumor-
derived macrophage inhibitory factor (MIF).

A xenograft model using the highly metastatic NCI-H460-LNM35
(LNM35) human lung carcinoma cell line, in comparison to the low
metastatic cell line NCI-H460-N15 (N15), found that the highly
metastatic cancer cells were associated with increased macrophage and
neutrophil infiltration and lymph node metastasis in vivo. This
phenomenon was correlated with human and murine expression of
IL-1, and VEGF-A,-C and-D molecules [60]. Interestingly, the
enhanced F4/80+ infiltrating macrophages, detected by
immunohistochemistry, expressed specific markers for the M2-type,
i.e. IL-10 and ARG1 mRNAs, as well as for both VEGF-A and VEGF-
C mRNAs (Figures 1 and 2). The high angiogenic and
lymphangiogenic potential of LNM35 tumors appeared to be mediated
by induction of CXC chemokines: IL-8 (CXCL8), CXCL5 and CXCL1
by cancer cells (Figure 1), in conjunction with a IL-1-driven
inflammatory signaling that lead to the recruitment of M2-type
macrophages.

Figure 2: Polarization of innate immune cells toward a pro
angiogenic phenotype and function during NSCLC tumor growth
and progression. The tumor mass fate, their invasive capacity,
dissemination and clinical outcome are strictly dependent of the
interactions with innate polarized pro-tumor and pro-angiogenic
innate cells. Among these cells, M2/TAM, N2/TAN, regDC, MDSC,
TINK and CAF are main actors playing key roles in shaping the
TUMIC with capacities that lead to evasion from immune
recognition and destruction, tumor-promoting inflammation and
angiogenesis.

Concerning the role of the TEM subset in tumor vascularization
and progression, it has been reported that selective depletion, or
inhibition of their migration capacities, results in substantial
inhibition of both tumor angiogenesis and progression in various
mouse tumor models [61,62]. TEMs represent a subset of already pre-
programmed highly pro-angiogenic circulating human monocytes that
can be detected in several tumor infiltrates, including lung carcinomas,
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near to the tumor blood vasculature as well as in the stroma [63]. In
contrast to Tie2-monocytes, TEMs showed higher expression of
MMP-9, VEGF-A, COX-2, and WNT5A [64]. Furthermore, exposure
to ANG-2 induced enhanced tumor-promoting functions of TEMs, in
particular increasing expression of two important pro-angiogenic
enzymes: thymidine phosphorylase (TP) and cathepsin B (CTSB) [64].
Purified peripheral TEMs from healthy human donors, induced
angiogenesis in xenotransplanted human tumors while Tie2-
monocytes did not, suggesting a key role for TEMs in human cancer
growth [63]. ANG-2 has also been implicated in lung metastasis and
formation of the pre-metastatic niche by TEMs [65].

Neutrophils
Neutrophils are the most abundant circulating leukocytes and

represent the first-line host defense against infectious microorganisms.
In response to diverse inflammatory stimuli, neutrophils migrate from
blood to infected tissues, where they efficiently contain pathogens
through several strategies: phagocytosis which involves the
microorganism engulfment and subsequent elimination in
phagolysosomes and degranulation which results in potent
antimicrobial lytic molecule release (including activation of
myeloperossidase (MPO) and the respiratory burst) resulting in
copious production of reactive oxygen species (ROS) (O−2, H2O2,
HOCl) [66,67] and formation of neutrophil extracellular traps. In
addition, neutrophils are also able to produce several cytokines (TNFα,
IL-1β, IL-12) and chemokines (CXCL8, CXCL10, CCL3, and CCL4)
(Figure 2) directly involved in the complex immune cell cross-talk in
order to regulate the balance between humoral and cell-mediated
immunity [68,69].

Neutrophils represent a significant inflammatory cell infiltrate
component observed in a wide array of murine and human tumors,
including head and neck cancer [70], renal cell carcinoma [71],
melanoma [72], hepatocellular cancer [73], colon cancer [74], gastric
cancer [75] and lung cancer [46,76], suggesting a potential
involvement in tumor development.

Although the role of tumor-associated neutrophils (TANs) in
cancer progression remains unclear and is currently debated, increased
systemic neutrophil levels [77] and high intra-tumor neutrophil
density were found to be a negative prognostic factor [76]. The first
evidence of neutrophil infiltrated BAC was reviewed in 1998 when
Bellocq et al. reported that an enhanced TAN number was
significantly associated with a poor outcome in BAC patients [78].
Increased blood neutrophil numbers was associated with a negative
prognosis and a poor overall survival (OS) in patients with advanced
NSCLC [79] and with small cell lung carcinoma (SCLC) [80]. Intra-
tumor CD66b+ neutrophils in resectable NSCLC were correlated with
a significantly increased relapse incidence [76].

Like macrophages, neutrophils have also been reported to be able to
display at least two different phenotypes associated with diverse
biological behavior. Fridlender et al. demonstrated that in mouse
models of lung cancer, TGFβ represents a crucial factor that induces a
shift from an anti-tumor (N1) to a pro-tumor (N2) neutrophil
phenotype (Figure 2). When TGFβ activity was blocked, N1
neutrophils were observed to be associated with direct tumor cell
killing and CD8+ T cell activation, whereas N2 neutrophils were
predominant in the control animals bearing tumors [81].

Early-stage NSCLC TANs displayed a CD62LlowCD54high

phenotype with a characteristic pattern of chemokine receptors

including CCR5, CCR7, CXCR3, and CXCR4 [82]. These TANs were
able to release pro-inflammatory cytokines (CCL2, IL-8, CCL3, and
IL-6) as well as the anti-inflammatory IL-1R antagonist (Figure 2).
Both TANs and neutrophils isolated from distant non-malignant lung
tissues were able to induce T cell proliferation and IFNγ production.
TAN-T cell cross-talk induced an increase of CD54, CD86, OX40L,
and 4-1BBL co-stimulatory molecules on the neutrophil surface, which
fostered T cell proliferation in a positive-feedback loop [82].

Several recent studies have highlighted the importance of the
neutrophil-to-lymphocyte ratio, a biomarker of the host systemic
inflammatory response whose increase has been reported to be
associated with a poor outcome in patients with SCLC [83] and
NSCLC patients receiving standard chemotherapy [84]. In an in-vitro
study, Hattar et al. demonstrated that the co-incubation of A549 with
neutrophils induced proliferation of A549 cells by an elastase-
dependent mechanism. Moreover, a specific COX-2 inhibitor was able
to decrease A549 proliferation in the presence of neutrophils [85].
Inhibition of COX-2 has been associated with reduction of lung cancer
incidence [3]. Together these data suggested the potential relevance of
the interactions between neutrophils and tumor cells that could lead to
the release of inflammatory mediators that potentially are able to
enhance tumor cell growth and inhibition of this process may help
delay tumor onset.

Dendritic cells
Dendritic cells (DCs) are the most important antigen presenting

cells (APCs) primarily involved in inducing the adaptive immune
response, whereas immature DCs are able to prevent the activation of
auto-reactive T cells and the onset of autoimmunity [86,87].

Following maturation, DCs give rise to a heterogeneous population
of cells in which the two main actors are conventional DCs (cDCs)
(also called myeloid (mDCs)) and plasmacytoid (pDCs) [88]. cDCs are
able to secrete IL-12 and can be reproduced in vitro using CD34+

precursors or blood monocytes using appropriate stiumuli; when
exposed to TGFβ they are able to differentiate into Langerhans cells
(LCs). On the other hand, pDCs can release interferon-alpha (IFNα)
and are derived from lymphoid precursors, express the surface marker
CD123 (interleukin IL-3 receptor, IL-3R) and their growth is
dependent on the presence of IL-3 [89-91].

During cancer promotion and progression, the maturation of DCs
is strongly inhibited by different signals from the microenvironment
and DCs remain in an immature state, thereby acquiring a tolerogenic
and immunosuppressive properties [92,93].

Patients with NSCLC are characterized by reduced CD11c+ cDCs,
in particular in lymph nodes of patients with metastasis or in lymph
nodes located adjacent to the primary tumor in subjects without
metastasis. Moreover, DCs within the tumor show low expression of
HLA-DR antigens, suggesting that their ability for antigen
presentation is severely impaired [94]. Among CD11c+ cDCs present
in lung cancer, three major subpopulations have been identified in
NSCLC: CD1a+(a marker that specifically identifies immature DCs
[95]) Langerin+cells, CD1a+Langerin-cells, and CD1a-DC-SIGN
+CD68-cells [96,97]. CD123+ pDCs have also been observed in lower
numbers in tumor tissues as compared to healthy tissue [98].

CD83+ mature DCs are found in a very low numbers in tumor
tissues, higher numbers are found in adjacent tissues [100]. NSCLC
tumor tissues also contain three subsets of cDCs based on CD11c
expression: high (CD11chigh cDC), intermediate (CD11cint cDC) and
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low (CD11c-pDC). Tumor-infiltrating CD11chigh cDCs show a lower
state of maturation as compared with DCs from peripheral blood, and
the stimulation of tumor-infiltrating cDCs by TLR4 or TLR8 ligands
are only able to induce secretion of limited amounts of cytokines.
CD11cint DCs represent a quarter of total DCs found in tumor and
adjacent tissues, they express low levels of co-stimulatory molecules
and high levels of immune-inhibitory molecules, such as B7-H1. The
decreased numbers of CD11c- pDCs found in tumors represent
immature cells that are able to secret low amount of IFNα upon TLR9
stimulation [100].

High VEGF expression and DC infiltration have been reported to
be inversely correlated in tumor specimens of NSCLC and are
associated with a poor prognosis [101] suggesting that VEGF might
inhibit or regulate DC recruitment and/or activation. Conversely, a
high density of mature DCs can be considered a good predictor for
clinical outcome in NSCLC, as it is correlated with prolonged survival
and it may identify patients with early-stage tumors [102].

DCs with immunosuppressive functions (Figure 2) are termed
regulatory DCs (regDCs) [103]. It was recently demonstrated that, in
mice, development of LLC was associated with intra-tumor
accumulation of regDCs [104].

NSCLC cells that are positive for programmed-death receptor
ligand 1 (PD-L1) are associated with histological subtypes and overall
survival. Patients with ADC or prognosis after surgery less than 3 years
show higher expression rate of PD-L1, thus this molecule might be
regarded as a poor prognostic factor. PD-L1 was detected in CD1a+

immature DCs in NSCLC, potentially maintaining DC in an immature
state and contributing to the immune escape and disease progression
[105]. The B7-H3 co-inhibitory molecule (a member of the PD-L
family) is up-regulated in NSCLC-residing DC, this phenomenon
correlates with lymph node metastasis [106]. High levels of circulating
B7-H3+ DCs are associated with tumor stage and metastasis diffusion.
NSCLC-derived DCs show immunosuppressive activities and are able
to release large amounts of IL-10 (Figure 2), contributing to an
immature phenotype and tolerogenic state [106]. DCs, like other
immune cells, can be conditioned and polarized by tumor
microenvironment into tolerogenic cells able to contribute to tumor
progression, immunosuppression and angiogenesis by releasing TGFβ,
polarizing T lymphocytes into pro-tumor Th2 cells (Figure 2) and
activating Treg cells [104].

Myeloid-derived suppressor cells
Myeloid-derived suppressor cells (MDSCs) include a heterogeneous

population of immature myeloid and myeloid progenitor cells
endowed with immunosuppressive properties, pro-angiogenic
potential, and able to support metastatic spread [107,108]. Human
MDSCs are described as CD11b+, CD33+, CD16low, HLA-DRneg/low

and can be classified into two major subsets based on CD14 marker
expression: the CD14+ subtype, termed monocytic MDSCs (M-
MDSCs), and the CD14-CD15+ subtype that are polymorphonuclear
MDSCs (PMN-MDSCs) [109]. The murine counterpart is
characterized by the co-expression of Gr-1 and CD11b [108].

Tumor and inflammatory milieu-derived mediators such as IL-1β,
IL-6, IL-10, VEGF and GM-CSF are crucial factors able to induce
MDSC recruitment, expansion, and triggering functions [110]. Murine
MDSCs exert a direct role in the promotion of tumor angiogenesis
through release of soluble factors, such as MMP-9 and VEGF, and by
their ability to trans-differentiate into ECs [111,112]. In contrast, the

MMP inhibitor TIMP-2 targets NSCLC MDSCs and impairs their
angiogenic and immunosupressive potential [113]. In addition, it has
been proposed that murine MDSCs could act as regDCs, since once
isolated from lungs of healthy mice and co-cultured with LCC
conditioned medium, they acquire inhibitory functions. [104]. regDCs
can also secrete TGFβ and IL-10 (Figure 2) resulting in the
suppression of immune responses, mainly through inhibition of T
helper, T cytotoxic lymphocytes and natural killer cells [114] as well as
the induction of Tregs [115].

HLA-DR-/low M-MDSCs have been found to be increased in the
peripheral blood of NSCLC patients as compared to healthy donors
[116] and their numbers were associated with extrathoracic metastasis,
as well as response to chemotherapy and tumor progression. M-
MDSCs appear to exert very low allo-stimulatory activity and show the
ability to inhibit both autologous CD4+ and CD8+ T cell proliferation
and IFNγ production in a cell-to-cell contact-dependent manner. M-
MDSCs have been shown to express the NADPH oxidase component
gp91phox and are able to generate high level of reactive oxygen species
(ROS) suggesting that their suppressive effect on T cells is mainly
mediated by ROS production [116]. In advanced NSCLC patients, it
has been shown that PMN-MDSC peripheral count was increased, and
this subset, when co-cultured in vitro with CD8+ T cells, was able to
reduce the expression of CD3ζ chain leading to the suppression of T
cell proliferation and induction of apoptosis [117]. In peripheral blood
the CD11b+CD14-MDSC subpopulation is decreased in advanced
disease stage patients that are responsive to chemotherapy or in early-
stage patients after tumor mass surgical resection [117].

Depletion of L-arginine by the enzyme ARG1 has been reported as
an additional mechanism by which MDSCs are able to exert their
immunosuppressive role. ARG1 is mainly produced by PMN-MDSC
and the ARG1 levels in peripheral blood of NSCLC patients are
correlated with PMN-MDSC count [118]. In different types of cancer,
including NSCLC, an accumulation in the peripheral blood of
immature CD66b+ PMN-MDSCs in the MDSC fraction with
immunosuppressive activities has been found [119]. These cells display
altered surface marker expression, longer survival and decreased
ability to act as effector cells when compared to neutrophils derived
from healthy subjects. Furthermore, PMN-MDSCs lack CXCR1 and
CXCR2 receptors, suggesting an extravasation and tumor tissue
infiltration defects in vivo [119]. In a murine model of lung cancer,
treatment with mAb against the Gr1 or Ly6G markers depleted
MDSCs, resulting in enhanced anti-tumor immune responses and
inhibition of pro-angiogenic activities [120]. When MDSC depletion
was induced using LLC-Ovalbumin expressing tumor cells, the
treatment resulted in enhanced therapeutic vaccination responses with
marked inhibition of tumor growth and strong reduction in tumor
burden compared to controls.

Finally, MDSCs have been shown to be crucial in the modulation of
immune responses, contributing to angiogenesis and promoting
tumor progression and metastases [109]. Accumulating experimental
data show an inverse correlation between MDSC number, cancer
clinical stage, and prognosis, suggesting that MDSCs could be a
potential marker correlating clinical outcome and response to therapy;
larger prospective trials are needed to determine the role of MDSC as a
biomarker [121].

Natural killer cells
Natural killer (NK) cells are innate immune cell effectors able to

recognize and eliminate tumor and virus-infected cells. NKs constitute
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a heterogeneous population of large granular lymphocytes that
comprise approximately 10-15% of peripheral blood mononuclear
cells (PBMC) in humans. Several human NK cell subsets have been
described on the basis of the expression of two main surface antigens,
CD56 and CD16. CD56dimCD16+ NK cells constitutes about 90-95%
of peripheral blood NK cells and are associated with target cell
eradication through the secretion of perforin, granzyme and antibody
dependent cellular cytotoxicity (ADCC) [122]. The second NK cell
subset, CD56brightCD16-, represents about 5-10% of peripheral blood
NK cells. These NK cells are poorly cytotoxic but able to release large
amounts of cytokines, including IFNγ, TNFα, and GM-CSF. A
peculiar third NK cell subset has been found in the decidua during
implantation [123,124]. Decidual NK cells (dNKs) are
CD56superbrightCD16-, have low cytotoxicity [125], are tolerogenic,
participate in the protection of the developing embryo, and are
involved in decidual angiogenesis producing copious quantities of
angiogenic factors [125] as well as promoting decidual cellularity
[126].

dNKs represent a clear example of the microenvironment
involvement in shaping immune cell plasticity and response. A similar
scenario has been described in the context of lung cancer. Carrega et
al. showed that CD56brightCD16-subset represent the predominant NK
subset infiltrating NSCLC [8]. Tumor infiltrating NK cells have been
reported to exert poor cytotoxicity on target tumor cells [8,9,127-129].
We demonstrated that CD56brightCD16- NK cells infiltrating resectable
NSCLC tumors, and even peripheral blood NK cells in patients with
NSCLC, express pro-angiogenic cytokines (Figure 2) including VEGF,
PlGF and IL-8 [7]. These factors are functionally active in vitro on
endothelial cells. These data suggest that NK cells contribute to tumor
angiogenesis in NSCLC. Like dNK cells and NK cells in some cases of
tissue injury, the NSCLC tumor infiltrating NK cells (TINKs) and
peripheral blood NK cells from oncology patients (tumor associated
NK cells or TANKs) [130] have pro-angiogenic activities [7]. We also
observed that the NK-associated pro-angiogenic activity was
particularly pronounced in patients with SCC NSCLC, again
suggesting that SCC subtype starts aggressively but remains constant
over time, while ADC continues to gain increasing malignancy as time
passes, in keeping with clinical observations. These data indicate that
the NSCLC TUMIC exerts a potent polarizing effect on NK cells,
resulting in phenotype and functional alterations of these cells both
locally and systemically. Several TUMIC-derived/associated factors
have been report to impair NK “normal function”, including acidity,
hypoxia, immune suppressive cytokines (in particular TGFβ),
exosomes.

TGFβ is one of the numerous TUMIC factors involved in the
induction of immune cell polarization [131], and is expressed at high
levels both in the TUMIC and in the decidua [130]. TGFβ has been
found to polarize the CD56dimCD16-peripheral NK cells toward a
decidual-like phenotype expressing CD56brightCD16-, KIR+

CD9+CD49a+ [130]. TGFβ has been shown to inhibit CD16-mediated
human NK cell IFNγ-production and ADCC through SMAD3 [132].
TGFβ appears to contribute to the induction of the angiogenic switch
of NK cells from healthy individuals [130].

An hypoxic microenvironment is another common theme between
the decidua [133] and the TUMIC [134]. A combination of TGFβ,
hypoxia, and a demethylating agent have been found to convert sorted
peripheral blood CD56dimCD16+ NK cells into a dNK-like cell
phenotype characterized by low cytotoxicity associated with high
expression levels of VEGF, CD9 marker and KIRs [135].

Adenosine is a soluble immunomodulatory molecule acting
through adenosine receptors (in particular A1, A2A, A2B, and A3)
expressed on multiple immune subsets, including NK cells. Adenosine
peaks during decidualization [136] and up to 20-fold increases in the
extracellular fluid of solid carcinomas has been reported [137]. Once
released in the extracellular environment, adenosine has been reported
to impair NK cell normal function by decreasing TNFα secretion
(following IL-2 stimulation), inhibiting cytotoxic granule exocytosis,
repressing perforin and Fas ligand-mediated cytotoxic activity as well
as cytokine production [138].

Finally, exosomes are abundantly released by tumor cells and
present in the TUMIC, and represent another mechanism by which
tumors regulate NK cell plasticity by impairing NK killing efficiency
[139]. This impairment includes the down-regulating perforin/
granzyme production and/or NKG2D ligand expression [140]. The
production of NKG2D ligand-bearing exosomes has also been
proposed as a mechanism for tumor cell escape from immune
recognition [141]. Moreover, the granzyme B-inhibitory serpin
proteinase inhibitor-9 (PI-9) has also been identified inside exosomes
[142] that could also play an important role in the resistance of tumor
cells to NK cell lysis.

Mast Cells
Mast cells (MCs) represent another inflammatory cell type

associated with high plasticity that are able to regulate different aspects
of inflammatory responses, angiogenesis, allergic reactions, tissue
repair, remodeling and tumor. MCs have been reported to accumulate
in several types of tumors in response to diverse tumor-derived
chemoattractant factors, including RANTES, CCL2, stem cell factor
(SCF) [143]. MCs are able to release several pro-angiogenic factors,
such as fibroblast growth factor 2 (FGF-2), VEGF-A,-B,-C,-D, IL-8,
TNFα, TGFβ [144]. Moreover they store secretory granules pre-
formed active serine proteases, including tryptase and chymase [145].
Tryptase is a strong stimulator of EC proliferation leading to promote
vascular tube formation in vitro, and also a valuable activator of both
MMPs and PA [146].

MC numbers within tumor tissues have been correlated with tumor
angiogenesis, cancer progression and poor prognosis in lung
adenocarcinomas [147-150]. Interestingly, the accumulation rate of
MCs was significantly different between diverse types of NSCLC [151].
Proliferation of SCLC was found to be associated with the expression
of H1, H2, H3 and H4 histamine-receptors [151]. H1-receptor
inhibition resulted in an improved overall survival rate and decrease
tumor proliferation by inhibiting mast cell recruitment and release of
VEGF and HIF-1α [152]. Abundant MC accumulation in solid
cancers, including lung carcinomas, has been showed to closely
associate with the number of blood vessels surrounding solid tumors
apparently sustaining tumor angiogenesis [153]. MC contribution to
tumor angiogenesis is exerted by the release of growth factors,
including VEGF, IL-8 and MMP-9 secretion, which in turn facilitates
tumor invasiveness [144]. Studies using mast cell-deficient KitW/
KitWvor KitW-sh/KitW-sh mice showed that tumor-associated MCs
significantly contribute to tumor angiogenesis, enhancing tumor
growth and metastasis [154-156]. However, there are some
controversial studies in NSCLC concerning the role of MCs as
predictors of poor survival [147,148]. Although angiogenesis and MC
density were found to be positively associated, only microvascular
density, and not the MC count, was correlated with poor survival in
SCC NSCLC patients [147]. A positive beneficial role for tumor MC
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accumulation together with CD68+ macrophage infiltration has been
reported [47], adding some unresolved and conflicting features for
defining the importance of MCs infiltrating NSCLC as a driving force
in tumor angiogenesis and progression.

Cancer-associated fibroblasts
Cancer-associated fibroblasts (CAFs) are a major component of the

TUMIC (Figure 2), regulating important tumor cell functions by
secreting several cytokines, chemokines and growth factors, such as
TGFβ, VEGF, CXCL12, HGF, FGF, ECM proteins and ECM
degrading enzymes (MMPs) [157-159]. CAFs constitute a major
portion of the reactive tumor cell stroma and play a crucial role in
tumor progression. The main precursors of CAFs are normal
fibroblasts, and the transdifferentiation of fibroblasts to CAFs is driven
to a great extent by cancer-derived cytokines such as TGFβ [161]. The
tumor-promoting effects of CAFs have been described as a hallmark of
cancer, since they are directly associated with evasion of apoptosis,
sustained angiogenesis promotion, and tissue invasion and metastasis
[162]. CAFs are also able to secrete IL-6 (Figure 2) and cardiotrophin-
like cytokine factor 1 (CLCF1), cytokines that play a role in the
promotion of NSCLC growth [163]. Compared with normal
fibroblasts, CAFs appear to increase the invasiveness of co-cultured
NSCLC cells in vitro and also enhanced tumorigenicity of NSCLC cells
lines in vivo [164]. Mechanisms involved appear to be enhancement of
integrin α11, CTHRC1, SULF1, MFAP5, CLU, and THBS2 expression
[164]. These genes are regulated by the TGFβ1 signaling pathway
[165,166], crucial for CAF differentiation and for the induction of
epithelial to mesenchymal transition (EMT) [167].

The pro-metastatic role of CAFs in NSCLC was confirmed in co-
culture studies: CAFs induce an increase in motility of NSCLC cells
through the expression of alpha-smooth muscle actin, and a decrease
in proliferation through a SMAD3-dependent up-regulation of the
growth inhibitory gene p21 (CDKN1A) [167]. CAFs secrete ECM
degrading enzymes, in particular MMPs (Figure 2), facilitating tumor
invasion and metastasis [159]. Through recruitment of endothelial
precursor cells (EPCs) and monocytes [168-170], CAFs contribute to
pro-angiogenic and tumor progression. In breast cancer, the pro-
angiogenic properties exerted by CAFs is linked to their ability to
recruit endothelial precursor cells (EPCs) via SDF-1/CXCL12
secretion [169] and monocytes via CCL2-CCR2A/2B signaling
pathway [168]. The role of CAFs in the promotion of angiogenesis in
the context NSCLC remains to be elucidated. Tissue fibrosis has been
epidemiologically associated with increased risk for tumors, and recent
studies have suggested a correlation between matrix rigidity and
cancer insurgence [171,172]. However, using a genetic murine model,
deletion of αSMAC+ fibroblasts actually stimulated progression of
pancreatic cancer [173], indicating we still have a great deal to
understand in the role of CAFs within the TUMIC.

T regulatory cells
Regulatory T cells (Tregs) are immunosuppressive lymphocytes able

to impair auto-reactive T cell activity and maintain immunological
self-tolerance. In NSCLC, Tregs (defined as CD4+CD25highFOXP3+

[12]) number is associated with advanced tumor growth and poor
prognosis [175]. T cell infiltration in malignant and non-malignant
lung tissues was found to be similar, and both tissue and tumor-
infiltrating T cells show no functional impairment. However,
CD4+CD25+CD127-Treg cells are present only in malignant tissues
[177]. Additional data confirm that NSCLC patients display an

increased percentage of Treg cells as compared to controls, and
demonstrate that the Treg cell count is increased in relation to tumor
stage and higher in patients with metastasis as compared to non-
metastatic patients [176,177]. Furthermore, Tregs are found in all lung
carcinoma subtypes, but with significant enrichment in
adenocarcinoma respect to squamous carcinoma [178].

Increased accumulation of Tregs in NSCLC tissues is correlated with
poor prognosis [179,180], in particular in smoking patients. Smoking
patients characterized by a higher number of Tregs [181] have a
significantly higher risk for recurrent disease [179]. Moreover, high
Treg count in the regional lymph nodes is associated with an
unfavorable prognostic factor even in lymph node negative patients
[182]. The frequency of peripheral Tregs was found to be significantly
higher in tumor of patients with pleural invasion, vessel invasion,
lymphatic vessel invasion and recurrent disease [183].

Forkhead box protein 3 (FOXP3) and toll-like receptor 4 (TLR4)
are relevant factors exerting a role in tumor escape and tumor growth.
The expression of these two factors in NSCLC is higher than in normal
lung tissue. FOXP3 expression correlates with lymph node metastasis
and tumor staging and is aged-related, whereas TLR4 expression is
related with tumor differentiation [184,185]. Moreover, T cell
immunoglobulin-3 (TIM-3) is a negative regulatory molecule that
plays a critical role in immune tolerance. Nearly 60% of FOXP3+

tumor-infiltrating lymphocytes are TIM-3+, and TIM-3 expression on
CD4+ T cells correlated with poor clinical-pathological parameters of
NSCLC patients, such as nodal metastasis and advanced cancer stages
[186].

Induction of CD4+CD25+FOXP3+ Tregs occurs in vitro when CD4+

T cells are exposed to antigens or polyclonal activators in the presence
of immunosuppressive cytokines, in particular IL-10 or TGFβ [187]. It
is known that TGFβ is expressed in patients with high risk to develop
NSCLC [188]. Both ADC and SSC patients exhibited higher levels of
serum IL-10 and TGFβ than healthy controls [189]. TGFβ-mediated
immunosuppression is in relationship with aberrant inflammation
(COX-2/PGE2 pathway) and this is related to the induction of
polarization to Tregs. PGE2 is able to stimulate the development of
Tregs, both in vitro and in vivo, suggesting a crucial role of tumor-
derived COX-2 promotion of the Treg phenotype. COX-2/PGE2 and
TGFβ are both implicated in tumorigenesis and are capable to
generate peripherally induced Tregs [190,191].

TGFβ plasma concentration in NSCLC patients directly correlated
with the frequency of circulating CD4+CD25+FOXP3+ Tregs. These
cells display higher expression levels of FOXP3 if compared to Tregs of
control subjects. It is of note that in resected lung tumor tissue
specimens, a co-expression of TGFβ, COX-2, and FOXP3 is found
[192]. Anti-CD25 IgG plasma level was significantly higher in patients
with NSCLC than control subjects, in particular in patients at stage III
of NSCLC, suggesting that antibody specificity could be used as a
biomarker for prognosis of lung cancers in analogy with the
enhancement of Treg count in peripheral blood [193]. Whilw it is clear
that Tregs play a role in the promotion of tumor tolerance and
immunosuppression their specific contribution to tumor angiogenesis
in NSCLC still requires further investigation.

Concluding remarks
The NSCLC TUMIC is able to polarize most innate immune cells

toward a pro-tumor phenotype. In some cases this can be extended
systemically, with peripheral cells also being affected. Polarization
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within the TUMIC is then critical for permitting tumor angiogenesis,
suppression and subversion of the adaptive immune system, leading to
tumor progression. Thus the TUMIC and the immune cells within the
TUMIC can be considered targets for prevention and therapy.
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